MRCPP
 Release 1.2.0-alpha

Luca Frediani, Stig Rune Jensen, Peter Wind, Magnar Bjorgve, Ro

INSTALLATION

1 Obtaining the code 3
2 Building the code 5
3 Running tests 7
4 Running examples 9
5 Pilot code 11
6 MRCPP as a dependency 13
7 Introduction 15
8 MWFunctions 17
9 MWOperators 43
10 Gaussians 53
11 Parallel 59
12 Printer 63
13 Plotter 69
14 Timer 73
15 Manual overview 75
16 Clang-tidy 121
Index 123

The MultiResolution Computation Program Package (MRCPP) is a general purpose numerical mathematics library based on multiresolution analysis and the multiwavelet basis which provide low-scaling algorithms as well as rigorous error control in numerical computations.
The code is being developed at the Hylleraas Centre for Quantum Molecular Sciences at UiT - The Arctic University of Norway.

The code can be found on GitHub.

OBTAINING THE CODE

The latest version of MRCPP is available on GitHub:
\$ git clone git@github.com:MRChemSoft/mrcpp.git

BUILDING THE CODE

2.1 Prerequisites

- g++-5.4 or later (std=c++14)
- CMake version 3.11 or higher.
- Eigen version 3.3 or higher.
- BLAS (optional)

2.2 Configuration

The configuration and build process is managed through CMake, and a setup script is provided for the configuration step. MRCPP's only dependency is Eigen3, which will be downloaded at configure time unless it is already available on the system. If you have a local version not under the system path, you can point to it before running setup:
\$ export EIGEN3_ROOT=/path/to/eigen3
\$./setup [options] [<builddir>]

The setup script will create a directory called <builddir> (default build) and run CMake. There are several options available for the setup, and the most important are:

--cxx=<CXX>

C++ compiler [default: g++]
--omp
Enable OpenMP parallelization [default: False]
--mpi
Enable MPI parallelization [default: False]
--enable-tests
Enable tests [default: True]
--enable-examples
Enable tests [default: False]
--type=<TYPE>
Set the CMake build type (debug, release, relwithdebinfo, minsizerel) [default: release]
--prefix=<PATH $>$
Set the install path for make install
-h --help
List all options

2.3 Compilation

After successful configuration, the code is compiled using the make command in the <builddir> directory:

```
$ cd <builddir>
$ make
```


RUNNING TESTS

A set of tests is provided with the code to verify that the code compiled properly. To compile the test suite, add the --enable-tests option to setup, then run the tests with ctest:

```
$ ./setup --enable-tests build
$ cd build
$ make
$ ctest
```


RUNNING EXAMPLES

In addition to the test suite, the code comes with a number of small code snippets that demonstrate the features and the API of the library. These are located in the examples directory. To compile the example codes, add the enable-examples option to setup, and the example executables can be found under <build-dir>/bin/. E.g. to compile and run the MW projection example:

```
$ ./setup --enable-examples build-serial
$ cd build-serial
$ make
$ bin/projection
```

The shared memory parallelization (OpenMP) is controlled by the environment variable OMP_NUM_THREADS (make sure you have compiled with the --omp option to setup). E.g. to compile and run the Poisson solver example using 10 CPU cores:

```
$ ./setup --enable-examples --omp build-omp
$ cd build-omp
$ make
$ OMP_NUM_THREADS=10 bin/poisson
```

To run in MPI parallel, use the mpirun (or equivalent) command (make sure you have compiled with the --mpi option to setup, and used MPI compatible compilers, e.g. --cxx=mpicxx). Only examples with an mpi prefix will be affected by running in MPI:

```
$ ./setup --cxx=mpicxx --enable-examples --mpi build-mpi
$ cd build-mpi
$ make
$ mpirun -np 4 bin/mpi_send_tree
```

To run in hybrid OpenMP/MPI parallel, simply combine the two above:

```
$ ./setup --cxx=mpicxx --enable-examples --omp --mpi build-hybrid
$ cd build-hybrid
$ make
$ export OMP_NUM_THREADS=5
$ mpirun -np 4 bin/mpi_send_tree
```

Note that the core of MRCPP is only OpenMP parallelized. All MPI data or work distribution must be done manually in the application program, using the tools provided by MRCPP (see the Parallel section of the API).

CHAPTER

PILOT CODE

Finally, MRCPP comes with a personal sandbox where you can experiment and test new ideas, without messing around in the git repository. In the pilot/ directory you will find a skeleton code called mrcpp.cpp.sample. To trigger a build, re-name (copy) this file to mrcpp.cpp:

```
$ cd pilot
$ cp mrcpp.cpp.sample mrcpp.cpp
```

Now a corresponding executable will be build in <builddir>/bin/mrcpp-pilot/. Feel free to do whatever you like in your own pilot code, but please don't add this file to git. Also, please don't commit any changes to the existing examples (unless you know what you're doing).

MRCPP AS A DEPENDENCY

Building MRCPP provides CMake configuration files exporting the libraries and headers as targets to be consumed by third-party projects also using CMake:

```
$ ./setup --prefix=$HOME/Software/mrcpp
$ cd build
$ make
$ ctest
$ make install
```

Now libraries, headers and CMake configuration files can be found under the given prefix:

```
mrcpp/
- include/
    L_ MRCPP/
    lib64/
    _- libmrcpp.a
    - libmrcpp.so -> libmrcpp.so.1*
    - libmrcpp.so.1*
    share/
    L_ cmake/
```

As an example, the pilot sample can be built with the following CMakeLists.txt:

```
cmake_minimum_required(VERSION 3.11 FATAL_ERROR)
project(UseMRCPP LANGUAGES CXX)
set(CMAKE_CXX_STANDARD 14)
set(CMAKE_CXX_EXTENSIONS OFF)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
include(GNUInstallDirs)
set(CMAKE_ARCHIVE_OUTPUT_DIRECTORY ${PROJECT_BINARY_DIR}/${CMAKE_INSTALL_LIBDIR})
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${PROJECT_BINARY_DIR}/${CMAKE_INSTALL_LIBDIR})
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${PROJECT_BINARY_DIR}/${CMAKE_INSTALL_BINDIR})
find_package(MRCPP CONFIG REQUIRED)
get_property(_loc TARGET MRCPP::mrcpp PROPERTY LOCATION)
message(STATUS "Found MRCPP: ${_loc} (found version ${MRCPP_VERSION})")
```

```
add_executable(mrcpp mrcpp.cpp)
target_link_libraries(mrcpp
    PUBLIC
    MRCPP::mrcpp
    )
set_target_properties(mrcpp
    PROPERTIES
        MACOSX_RPATH ON
        SKIP_BUILD_RPATH OFF
        BUILD_WITH_INSTALL_RPATH OFF
        INSTALL_RPATH "$ORIGIN/../${CMAKE_INSTALL_LIBDIR}"
        INSTALL_RPATH_USE_LINK_PATH ON
    )
```

This will set up the include paths and library paths correctly. During configuration you will have to specify where the CMake configuration file for MRCPP is located:
\$ cmake -H. -Bbuild -DMRCPP_DIR=\$HOME/Software/share/cmake/MRCPP

INTRODUCTION

The main features of MRCPP are the numerical multiwavelet (MW) representations of functions and operators. Two integral convolution operators are implemented (the Poisson and Helmholtz operators), as well as the partial derivative and arithmetic operators. In addition to the numerical representations there are a limited number of analytic functions that are usually used as starting point for the numerical computations. Also, MRCPP provides three convenience classes (Timer, Printer and Plotter) that can be made available to the application program.

The API consists of seven include files which will be discussed in more detail below:

```
MRCPP/
__ MWFunctions
- MWOperators
- Gaussians
_ Parallel
_ Printer
    Plotter
    Timer
```


MRCPP/MWFunctions

Provides features for representation and manipulation of real-valued scalar functions in a MW basis, including projection of analytic function, numerical integration and scalar products, as well as arithmetic operations and function mappings.

MRCPP/MWOperators

Provides features for representation and application of MW operators. Currently there are three operators available: Poisson, Helmholtz and Cartesian derivative.

MRCPP/Gaussians

Provides some simple features for analytical Gaussian functions, useful e.g. to generate initial guesses for MW computations.

MRCPP/Parallel

Provides some simple MPI features for MRCPP, in particular the possibility to send complete MW function representations between MPI processes.

MRCPP/Printer

Provides simple (parallel safe) printing options. All MRCPP internal printing is done with this class, and the printer must be initialized in order to get any printed output, otherwise MRCPP will run silently.

MRCPP/Plotter

Provides options to generate data files for plotting of MW function representations. These include line plots, surface plots and cube plots, as well as grid visualization using geomview.

MRCPP/Timer

Provides an accurate timer for the wall clock in parallel computations.

7.1 Analytic functions

The general way of defining an analytic function in MRCPP is to use lambdas (or std::function), which provide lightweight functions that can be used on the fly. However, some analytic functions, like Gaussians, are of special importance and have been explicitly implemented with additional functionality (see Gaussian chapter).

In order to be accepted by the MW projector (see MWFunctions chapter), the lambda must have the following signature:

```
auto f = [] (const mrcpp::Coord<D> &r) -> double;
```

e.i. it must take a D-dimensional Cartesian coordinate (mrcpp: Coord<D> is simply an alias for std: :array<double, D>), and return a double. For instance, the electrostatic potential from a point nuclear charge Z (in atomic units) is

$$
f(r)=\frac{Z}{r}
$$

which can be written as the lambda function

```
auto Z = 1.0; // Hydrogen nuclear charge
auto f = [Z] (const mrcpp::Coord<3> &r) -> double {
    auto R = std::sqrt(r[0]*r[0] + r[1]*r[1] + r[2]*r[2]);
    return Z/R;
};
```

Note that the function signature must be exactly as given above, which means that any additional arguments (such as Z in this case) must be given in the capture list (square brackets), see e.g. cppreference.com for more details on lambda functions and how to use the capture list.

MWFUNCTIONS

Everything that is discussed in the following chapter is available to the application program by including:

```
#include "MRCPP/MWFunctions"
```

Multiwavelet (MW) representations of real-valued scalar functions are in MRCPP called FunctionTrees. These are in principle available in any dimension using the template parameter D (in practice $\mathrm{D}=1,2,3$). There are several different ways of constructing MW functions (computing the expansion coefficients in the MW basis):

- Projection of analytic function
- Arithmetic operations
- Application of MW operator

The first two will be discribed in this chapter, while the last one regarding operators will be the topic of the next chapter.
The interface for constructing MW representations in MRCPP has a dual focus: on the one hand we want a simple, intuitive way of producing adaptive numerical approximations with guaranteed precision that does not require detailed knowledge of the internals of the MW code and with a minimal number of parameters that have to be set. On the other hand we want the possibility for more detailed control of the construction and refinement of the numerical grid where such control is possible and even necessary. In the latter case it is important to be able to reuse the existing grids in e.g. iterative algorithms without excessive allocation/deallocation of memory.

8.1 MultiResolution Analysis (MRA)

template<int D>

class MultiResolutionAnalysis

Class collecting computational domain and MW basis.
In order to combine different functions and operators in mathematical operations, they need to be compatible. That is, they must be defined on the same computational domain and constructed using the same polynomial basis (order and type). This information constitutes an MRA, which needs to be defined and passed as argument to all function and operator constructors, and only functions and operators with compatible MRAs can be combined in subsequent calculations.

Public Functions

MultiResolutionAnalysis(std::array<int, $2>\mathrm{bb}$, int order, int depth $=$ MaxDepth)
Constructs a MultiResolutionAnalysis object composed of computational domain (world) and a polynomial basis (Multiwavelets)

Constructor of the MultiResolutionAnalysis class from scratch, without requiring any pre-existing complex structure. The constructor calls the InterpolatingBasis basis constructor to generate the MultiWavelets basis of functions, then the BoundingBox constructor to create the computational domain. The constructor then checks if the generated node depth, or node refinement is beyond the root scale or the maximum depth allowed, in which case it will abort the process. Otherwise, the process goes on to setup the filters with the class' setupFilter method.

Parameters

- $\mathbf{b b}$ - [in] 2-element integer array [Lower, Upper] defining the bounds for a BoundingBox object representing the computational domain
- order - [in] Maximum polynomial order of the multiwavelet basis, immediately used in the constructor of an InterPolatingBasis object which becomes an attribute of the MRA
- maxDepth - [in] Exponent of the node refinement in base 2, relative to root scale. In other words, it is the maximum amount of refinement that we allow in a node, in other to avoid overflow of values.

Returns

New MultiResolutionAnalysis (MRA) object
MultiResolutionAnalysis (const BoundingBox $<$ D $>\& \mathrm{bb}$, int order, int depth $=$ MaxDepth)
Constructs a MultiResolutionAnalysis object composed of computational domain (world) and a polynomial basis (Multiwavelets) from a pre-existing BoundingBox object.

Constructor of the MultiResolutionAnalysis class from a BoundingBox object. For more details see the first constructor.

Parameters

- $\mathbf{b b}$ - [in] BoundingBox object representing the computational domain
- order - [in] (integer) Maximum polynomial order of the multiwavelet basis, immediately used in the constructor of an InterPolatingBasis object which becomes an attribute of the MRA
- maxDepth - [in] (integer) Exponent of the node refinement in base 2, relative to root scale. In other words, it is the maximum amount of refinement that we allow in a node, in other to avoid overflow of values.

Returns

New MultiResolutionAnalysis (MRA) object
MultiResolutionAnalysis (const BoundingBox $<$ D $>\& \mathrm{bb}$, const ScalingBasis \&sb, int depth $=$ MaxDepth) Constructor for a MultiResolutionAnalysis object from a pre-existing BoundingBox (computational domain) and a ScalingBasis (Multiwavelet basis) objects.

Creates a MRA object from pre-existing BoundingBox and ScalingBasis objects. These objects are taken as reference. For more details about the constructor itself, see the first constructor.

Parameters

- bb - [in] Computational domain as a BoundingBox object, taken by constant reference
- sb - [in] Polynomial basis (MW) as a ScalingBasis object
- depth - [in] Maximum allowed resolution depth, relative to root scale

Returns

New MultiResolutionAnalysis object
MultiResolutionAnalysis(const MultiResolutionAnalysis $\langle D>$ \&mra)
Copy constructor for a MultiResolutionAnalysis object composed of computational domain (world) and a polynomial basis (Multiwavelets)

Copy a MultiResolutionAnalysis object without modifying the original. For more details see the first constructor.

```
Parameters
mra - [in] Pre-existing MRA object
```


Returns

New MultiResolutionAnalysis (MRA) object
double calcMaxDistance() const
Computes the difference between the lower and upper bounds of the computational domain.

Returns

Maximum possible distance between two points in the MRA domain
bool operator==(const MultiResolutionAnalysis<D>\&mra) const
Equality operator for the MultiResolutionAnalysis class, returns true if both MRAs have the same polynomial basis, computational domain and maximum depth, and false otherwise.

Equality operator for the MultiResolutionAnalysis class, returns true if both MRAs have the same polynomial basis represented by a BoundingBox object, computational domain (ScalingBasis object) and maximum depth (integer), and false otherwise. Computations on different MRA cannot be combined, this operator can be used to make sure that the multiple MRAs are compatible. For more information about the meaning of equality for BoundingBox and ScalingBasis objets, see their respective classes.

Parameters

mra - [in] MRA object, taken by constant reference

Returns

Whether the two MRA objects are equal.
bool operator! $=($ const MultiResolutionAnalysis $<D>\& m r a)$ const
Inequality operator for the MultiResolutionAnalysis class, returns false if both MRAs have the same polynomial basis, computational domain and maximum depth, and true otherwise.

Inequality operator for the MultiResolutionAnalysis class, returns true if both MRAs have the same polynomial basis represented by a BoundingBox object, computational domain (ScalingBasis object) and maximum depth (integer), and false otherwise. Opposite of the $==$ operator. For more information about the meaning of equality for BoundingBox and ScalingBasis objets, see their respective classes.

Parameters

mra - [in] MRA object, taken by constant reference

Returns

Whether the two MRA objects are not equal.
void print() const
Displays the MRA's attributes in the outstream defined in the Printer class.
This function displays the attributes of the MRA in the using the Printer class. By default, the Printer class writes all information in the output file, not the terminal.
template<int D>

class BoundingBox

Class defining the computational domain.
The computational domain is made up of a collection of D-dimensional boxes on a particular length scale n. The size of each box is then $\left[2^{-n}\right]^{D}$, i.e. higher scale means smaller boxes, and the scale may be negative. The number of boxes can be different in each dimension $\left[n_{x}, n_{y}, \ldots\right]$, but they must all be on the same scale (size). Box translations relative to the world origin must be an integer multiple of the given scale size 2^{-n}.
Subclassed by mrcpp::NodeBox< D >

Public Functions
explicit BoundingBox (std::array<int, $2>$ box)
Constructor for BoundingBox object.

Creates a box with appropriate root scale and scaling factor to fit the given bounds, which applies to all dimensions. Root scale is chosen such that the scaling factor becomes $1<$ sfac <2.
Limitations: Box must be either [0,L] or [-L,L], with L a positive integer. This is the most general constructor, which will create a world with no periodic boundary conditions.

Parameters

box - [in] [lower, upper] bound in all dimensions.

Returns

New BoundingBox object.
explicit BoundingBox(int $\mathrm{n}=0$, const std::array<int, $D>\& 1=\{ \}$, const std::array<int, $D>\& \mathrm{nb}=\{ \}$, const std::array<double, $D>\&$ sf $=\{ \}$, bool pbc = false)
Constructor for BoundingBox object.

Creates a box with given parameters. The parameter n defines the length scale, which, together with sf , determines the unit length of each side of the boxes by $\left[2^{-n}\right]^{D}$. The parameter 1 defines the corner translation of the lower corner of the box relative to the world origin. The parameter nb defines the number of boxes in each dimension. The parameter sf defines the scaling factor, which determines the box translations around the origin, i.e. the amount of boxes around origin. The parameter pbc defines whether the world is periodic or not. In this constructor this value makes all dimensions periodic. This constructor is used for work in periodic systems.

Parameters

- $\mathbf{n}-[\mathbf{i n}]$ Length scale, default 0 .
- \mathbf{l} - [in] Corner translation, default $[0,0, \ldots]$.
- nb - [in] Number of boxes, default $[1,1, \ldots]$.
- $\mathbf{s f}$ - [in] Scaling factor, default $[1.0,1.0, \ldots]$.
- pbc - [in] Periodic boundary conditions, default false.

Returns

New BoundingBox object.
explicit BoundingBox (const NodeIndex $\langle D>\& i d x$, const std::array<int, $D>\& n b=\{ \}$, const std::array<double, $D>\& s f=\{ \})$

Constructor for BoundingBox object.

Creates a box with given parameters. The parameter idx defines the index of the lower corner of the box relative to the world origin. The parameter nb defines the number of boxes in each dimension. The parameter sf defines the scaling factor, which determines the box translations around the origin, i.e. the amount of boxes around origin. This constructor creates a world with no periodic boundary conditions.

Parameters

- idx - [in] index of the lower corner of the box.
- nb - [in] Number of boxes, default $[1,1, \ldots]$.
- $\mathbf{s f}$ - [in] Scaling factor, default $[1.0,1.0, \ldots]$.

Returns

New BoundingBox object.
explicit BoundingBox (const std::array<double, $D>\& s f$, bool pbc $=$ true)
Constructor for BoundingBox object.

Creates a box with given parameters. The parameter sf defines the scaling factor, which determines the box translations around the origin, i.e. the amount of boxes around origin. The parameter pbc defines whether the world is periodic or not. In this constructor this value makes all dimensions periodic. This construtor is used for work in periodic systems.

Parameters

- $\mathbf{s f}$ - [in] Scaling factor, default $[1.0,1.0, \ldots]$.
- pbc - [in] Periodic boundary conditions, default true.

BoundingBox (const std::array<double, $D>\& s f$, std::array<bool, $D>\mathrm{pbc}$)
Constructor for BoundingBox object.

Creates a box with given parameters. The parameter sf defines the scaling factor, which determines the box translations around the origin, i.e. the amount of boxes around origin. The parameter pbc defines whether the world is periodic or not. In this constructor this value makes specific dimensions periodic. This is used for work in periodic systems.

Parameters

- $\mathbf{s f}$ - [in] Scaling factor, default $[1.0,1.0, \ldots]$.
- pbc - [in] Periodic boundary conditions, default true.

Returns

New BoundingBox object.

BoundingBox (const BoundingBox $<D>\& b o x$)

Constructor for BoundingBox object.

Creates a box identical to the input box paramter. This constructor uses all parameters from the other BoundingBox to create a new one.

Parameters

box - [in] Other BoundingBox object.

Returns

New BoundingBox object.
BoundingBox $<D>$ \&operator=(const BoundingBox $<D>\& \mathrm{box}$)
Assignment operator overload for BoundingBox object.

Allocates all parameters in this BoundingBox to be that of the other BoundingBox.

Parameters

box - [in] Other BoundingBox object.

Returns

New BoundingBox object.
NodeIndex $<D>$ getNodeIndex (int bIdx) const
Fetches a NodeIndex object from a given box index.

During the adaptive refinement, each original box will contain an increasing number of smaller cells, each of which will be part of a specific node in the tree. These cells are divided adaptivelly. This function returns the NodeIndex object of the cell at the lower back corner of the box object indexed by bIdx. Specialized for $\mathrm{D}=1$ below

Parameters

bIdx - [in] Box index, the index of the box we want to fetch the cell index from.

Returns

The NodeIndex object of the index given as it is in the Multiresolutoin analysis.
int getBoxIndex (Coord<D>r) const
Fetches the index of a box from a given coordinate.

Specialized for $D=1$ below

Parameters

$\mathbf{r}-$ [in] D-dimensional array representaing a coordinate in the simulation box

Returns

The index value of the boxes in the position given as it is in the generated world.
int getBoxIndex (NodeIndex $<D>$ nIdx) const
Fetches the index of a box from a given NodeIndex.

During the multiresolution analysis the boxes will be divided into smaller boxes, which means that each individual box will be part of a specific node in the tree. Each node will get its own index value, but will still be part of one of the original boxes of the world. Specialized for $\mathrm{D}=1$ below

Parameters

nIdx - [in] NodeIndex object, representing the node and its index in the adaptive tree.

Returns

The index value of the boxes in which the NodeIndex object is mapping to.
NodeIndex $<1>$ getNodeIndex (int bIdx) const
Fetches a NodeIndex object from a given box index, specialiced for 1-D.

During the adaptive refinement, each original box will contain an increasing number of smaller cells, each of which will be part of a specific node in the tree. These cells are divided adaptivelly. This function returns the NodeIndex object of the cell at the lower back corner of the box object indexed by bIdx.

Parameters

bIdx - [in] Box index, the index of the box we want to fetch the cell index from.

Returns

The NodeIndex object of the index given as it is in the Multiresolutoin analysis.
int getBoxIndex (Coord<1>r) const
Fetches the index of a box from a given coordinate, specialized for 1D.

Parameters

\mathbf{r} - [in] 1-dimensional array representaing a coordinate in the simulation box

Returns

The index value of the boxes in the position given as it is in the generated world.
int getBoxIndex (NodeIndex<1> nIdx) const
Fetches the index of a box from a given NodeIndex specialized for 1-D.

During the multiresolution analysis the boxes will be divided into smaller boxes, which means that each individual box will be part of a specific node in the tree. Each node will get its own index value, but will still be part of one of the original boxes of the world.

Parameters

nIdx - [in] NodeIndex object, representing the node and its index in the adaptive tree.

Returns

The index value of the boxes in which the NodeIndex object is mapping to.
class LegendreBasis : public mrcpp::ScalingBasis
Legendre scaling functions as defined by Alpert, SIAM J Math Anal 24 (1), 246 (1993).

Public Functions

inline LegendreBasis (int k)

Parameters

$\mathbf{k}-$ [in] Polynomial order of basis, $1<\mathrm{k}<40$

Returns

New LegendreBasis object
class InterpolatingBasis: public mrcpp::ScalingBasis
Interpolating scaling functions as defined by Alpert etal, J Comp Phys 182, 149-190 (2002).

Public Functions

inline InterpolatingBasis (int k)

```
Parameters
    k - [in] Polynomial order of basis, 1< k < 40
```


Returns

New InterpolatingBasis object

8.2 FunctionTree

template<int D>

class FunctionTree : public mrcpp::MWTree<D>, public mrcpp::RepresentableFunction<D>
Function representation in MW basis.
Constructing a full grown FunctionTree involves a number of steps, including setting up a memory allocator, constructing root nodes according to the given MRA, building an adaptive tree structure and computing MW coefficients. The FunctionTree constructor does only half of these steps: It takes an MRA argument, which defines the computational domain and scaling basis (these are fixed parameters that cannot be changed after construction). The tree is initialized with a memory allocator and a set of root nodes, but it does not compute any coefficients and the function is initially undefined. An undefined FunctionTree will have a well defined tree structure (at the very least the root nodes of the given MRA, but possibly with additional refinement) and its MW coefficient will be allocated but uninitialized, and its square norm will be negative (minus one).

Public Functions

FunctionTree(const MultiResolutionAnalysis<D> \&mra, SharedMemory *sh_mem = nullptr, const std::string \&name = "nn")

Constructs an uninitialized tree, containing only empty root nodes. If a shared memory pointer is provided the tree will be allocated in this shared memory window, otherwise it will be local to each MPI process.

Parameters

- mra - [in] Which MRA the function is defined
- sh_mem - [in] Pointer to MPI shared memory block

Returns

New FunctionTree object

8.2.1 Creating defined FunctionTrees

The following functions will define MW coefficients where there are none, and thus require that the output FunctionTree is in an undefined state. All functions marked with 'adaptive grid' will use the same building algorithm:

1. Start with an initial guess for the grid
2. Compute the MW coefficients for the output function on the current grid
3. Refine the grid where necessary based on the local wavelet norm
4. Iterate points 2 and 3 until the grid is converged

With a negative precision argument, the grid will be fixed, e.i. it will not be refined beyond the initial grid. There is also an argument to limit the number of extra refinement levels beyond the initial grid, in which the adaptive refinement will stop, even if the local precision requirement is not met.
void mrcpp: :MWTree:: setZero()
Set the MW coefficients to zero, keeping the same tree structure.
Keeps the node structure of the tree, even though the zero function is representable at depth zero. One should then use cropTree to remove unnecessary nodes.
template<int D>
void mrcpp: : project (double prec, FunctionTree<D> \&out, RepresentableFunction<D> \&inp, int maxIter, bool absPrec)

Project an analytic function onto the MW basis, adaptive grid.

The output function will be computed using the general algorithm:

- Compute MW coefs on current grid
- Refine grid where necessary based on prec
- Repeat until convergence or maxIter is reached
- prec <0 or maxIter $=0$ means NO refinement
- maxIter < © means no bound

Note: This algorithm will start at whatever grid is present in the out tree when the function is called (this grid should however be EMPTY, e.i. no coefs).

Parameters

- prec - [in] Build precision of output function
- out - [out] Output function to be built
- inp - [in] Input function
- maxIter - [in] Maximum number of refinement iterations in output tree
- absPrec - [in] Build output tree based on absolute precision
template<int D>
void mrcpp: : copy_func (FunctionTree<D>\&out, FunctionTree<D> \&inp)
Copy function from one tree onto the grid of another tree, fixed grid.

The output function will be computed using the general algorithm:

- Loop through current leaf nodes of the output tree
- Copy MW coefs from the corresponding input node

Note: This algorithm will start at whatever grid is present in the out tree when the function is called and will overwrite any existing coefs.

Parameters

- out - [out] Output function
- inp - [in] Input function
template<int $\mathrm{D}>$
void mrcpp : : add(double prec, FunctionTree<D>\&out, FunctionTreeVector<D>\&inp, int maxIter, bool absPrec)
Addition of several MW function representations, adaptive grid.

The output function will be computed as the sum of all input functions in the vector (including their numerical coefficients), using the general algorithm:

- Compute MW coefs on current grid
- Refine grid where necessary based on prec
- Repeat until convergence or maxIter is reached
- prec $<\boldsymbol{0}$ or maxIter $=0$ means NO refinement
- maxIter < 0 means no bound

Note: This algorithm will start at whatever grid is present in the out tree when the function is called (this grid should however be EMPTY, e.i. no coefs).

Parameters

- prec - [in] Build precision of output function
- out - [out] Output function to be built
- inp - [in] Vector of input function
- maxIter - [in] Maximum number of refinement iterations in output tree
- absPrec - [in] Build output tree based on absolute precision
template<int $\mathrm{D}>$
void mrcpp: : add (double prec, FunctionTree<D> \&out, double a, FunctionTree<D> \&inp_a, double b, FunctionTree<D> \&inp_b, int maxIter, bool absPrec)
Addition of two MW function representations, adaptive grid.

The output function will be computed as the sum of the two input functions (including the numerical coefficient), using the general algorithm:

- Compute MW coefs on current grid
- Refine grid where necessary based on prec
- Repeat until convergence or maxIter is reached
- prec $<\theta$ or maxIter $=0$ means NO refinement
- maxIter < 0 means no bound

Note: This algorithm will start at whatever grid is present in the out tree when the function is called (this grid should however be EMPTY, e.i. no coefs).

Parameters

- prec - [in] Build precision of output function
- out - [out] Output function to be built
- a-[in] Numerical coefficient of function a
- inp_a - [in] Input function a
- $b-[i n]$ Numerical coefficient of function b
- inp_b - [in] Input function b
- maxIter - [in] Maximum number of refinement iterations in output tree
- absPrec - [in] Build output tree based on absolute precision
template<int D>
void mrcpp: : multiply (double prec, FunctionTree<D>\&out, FunctionTreeVector<D>\&inp, int maxIter, bool absPrec, bool useMaxNorms)
Multiplication of several MW function representations, adaptive grid.

The output function will be computed as the product of all input functions in the vector (including their numerical coefficients), using the general algorithm:

- Compute MW coefs on current grid
- Refine grid where necessary based on prec
- Repeat until convergence or maxIter is reached
- prec <0 or maxIter $=0$ means NO refinement
- maxIter <0 means no bound

Note: This algorithm will start at whatever grid is present in the out tree when the function is called (this grid should however be EMPTY, e.i. no coefs).

Parameters

- prec - [in] Build precision of output function
- out - [out] Output function to be built
- inp - [in] Vector of input function
- maxIter - [in] Maximum number of refinement iterations in output tree
- absPrec - [in] Build output tree based on absolute precision
- useMaxNorms - [in] Build output tree based on norm estimates from input
template<int D>
void mrcpp: :multiply (double prec, FunctionTree<D>\&out, double c, FunctionTree<D>\&inp_a,
FunctionTree<D> \&inp_b, int maxIter, bool absPrec, bool useMaxNorms)
Multiplication of two MW function representations, adaptive grid.

The output function will be computed as the product of the two input functions (including the numerical coefficient), using the general algorithm:

- Compute MW coefs on current grid
- Refine grid where necessary based on prec
- Repeat until convergence or maxIter is reached
- prec <0 or maxIter $=0$ means NO refinement
- maxIter < Q means no bound

Note: This algorithm will start at whatever grid is present in the out tree when the function is called (this grid should however be EMPTY, e.i. no coefs).

Parameters

- prec - [in] Build precision of output function
- out - [out] Output function to be built
- c - [in] Numerical coefficient
- inp_a - [in] Input function a
- inp_b - [in] Input function b
- maxIter - [in] Maximum number of refinement iterations in output tree
- absPrec - [in] Build output tree based on absolute precision
- useMaxNorms - [in] Build output tree based on norm estimates from input
template<int D>
void mrcpp: : square (double prec, FunctionTree<D> \&out, FunctionTree<D> \&inp, int maxIter, bool absPrec)
Out-of-place square of MW function representations, adaptive grid.

The output function will be computed as the square of the input function, using the general algorithm:

- Compute MW coefs on current grid
- Refine grid where necessary based on prec
- Repeat until convergence or maxIter is reached
- prec <0 or maxIter $=0$ means NO refinement
- maxIter < © means no bound

Note: This algorithm will start at whatever grid is present in the out tree when the function is called (this grid should however be EMPTY, e.i. no coefs).

Parameters

- prec - [in] Build precision of output function
- out - [out] Output function to be built
- inp - [in] Input function to square
- maxIter - [in] Maximum number of refinement iterations in output tree
- absPrec - [in] Build output tree based on absolute precision
template<int D>
void mrcpp: : power (double prec, FunctionTree<D> \&out, FunctionTree<D> \&inp, double p, int maxIter, bool absPrec)
Out-of-place power of MW function representations, adaptive grid.

The output function will be computed as the input function raised to the given power, using the general algorithm:

- Compute MW coefs on current grid
- Refine grid where necessary based on prec
- Repeat until convergence or maxIter is reached
- prec <0 or maxIter $=0$ means NO refinement
- maxIter < © means no bound

Note: This algorithm will start at whatever grid is present in the out tree when the function is called (this grid should however be EMPTY, e.i. no coefs).

Parameters

- prec - [in] Build precision of output function
- out - [out] Output function to be built
- inp - [in] Input function to square
- p - [in] Numerical power
- maxIter - [in] Maximum number of refinement iterations in output tree
- absPrec - [in] Build output tree based on absolute precision
template<int D>
void mrcpp: : dot (double prec, FunctionTree<D> \&out, FunctionTreeVector<D> \&inp_a, FunctionTreeVector<D> \&inp_b, int maxIter, bool absPrec)
Dot product of two MW function vectors, adaptive grid.

The output function will be computed as the dot product of the two input vectors (including their numerical coefficients). The precision parameter is used only in the multiplication part, the final addition will be on the fixed union grid of the components.

Note: The length of the input vectors must be the same.

Parameters

- prec - [in] Build precision of output function
- out - [out] Output function to be built
- inp_a - [in] Input function vector
- inp_b - [in] Input function vector
- maxIter - [in] Maximum number of refinement iterations in output tree
- absPrec - [in] Build output tree based on absolute precision
template<int D>
void mrcpp: : map (double prec, FunctionTree<D> \& out, FunctionTree<D> \&inp, FMap fmap, int maxIter, bool absPrec)
map a MW function onto another representations, adaptive grid

The output function tree will be computed by mapping the input tree values through the fmap function, using the general algorithm:

- Compute MW coefs on current grid
- Refine grid where necessary based on prec
- Repeat until convergence or maxIter is reached
- prec <0 or maxIter $=0$ means NO refinement
- maxIter < Q means no bound

No assumption is made for how the mapping function looks. It is left to the end-user to guarantee that the mapping function does not lead to numerically unstable/inaccurate situations (e.g. divide by zero, overflow, etc...)

Note: This algorithm will start at whatever grid is present in the out tree when the function is called (this grid should however be EMPTY, e.i. no coefs).

Parameters

- prec - [in] Build precision of output function
- out - [out] Output function to be built
- inp - [in] Input function
- fmap - [in] mapping function
- maxIter - [in] Maximum number of refinement iterations in output tree
- absPrec - [in] Build output tree based on absolute precision

8.2.2 Creating undefined FunctionTrees

The grid of a FunctionTree can also be constructed without computing any MW coefficients:
template<int D>
void mrcpp: : build_grid(FunctionTree<D> \&out, const RepresentableFunction<D>\&inp, int maxIter)
Build empty grid based on info from analytic function.

The grid of the output function will be EXTENDED using the general algorithm:

- Loop through current leaf nodes of the output tree
- Refine node based on custom split check from the function
- Repeat until convergence or maxIter is reached
- maxIter < © means no bound

Note: This algorithm will start at whatever grid is present in the out tree when the function is called. It requires that the functions isVisibleAtScale() and isZeroOnInterval() is implemented in the particular RepresentableFunction.

Parameters

- out - [out] Output tree to be built
- inp - [in] Input function
- maxIter - [in] Maximum number of refinement iterations in output tree
template<int D>
void mrcpp: : build_grid (FunctionTree<D> \&out, const GaussExp<D> \&inp, int maxIter)
Build empty grid based on info from Gaussian expansion.

The grid of the output function will be EXTENDED using the general algorithm:

- Loop through current leaf nodes of the output tree
- Refine node based on custom split check from the function
- Repeat until convergence or maxIter is reached
- maxIter < © means no bound

Note: This algorithm will start at whatever grid is present in the out tree when the function is called. It will loop through the Gaussians in the expansion and extend the grid based on the position and exponent of each term. Higher exponent means finer resolution.

Parameters

- out - [out] Output tree to be built
- inp - [in] Input Gaussian expansion
- maxIter - [in] Maximum number of refinement iterations in output tree
template<int D>
void mrcpp: : build_grid(FunctionTree<D> \&out, FunctionTree<D> \&inp, int maxIter)
Build empty grid based on another MW function representation.

The grid of the output function will be EXTENDED with all existing nodes in corresponding input function, using the general algorithm:

- Loop through current leaf nodes of the output tree
- Refine node if the corresponding node in the input has children
- Repeat until all input nodes are covered or maxIter is reached
- maxIter < © means no bound

Note: This algorithm will start at whatever grid is present in the out tree when the function is called. This means that all nodes on the input tree will also be in the final output tree (unless maxIter is reached, but NOT vice versa.

Parameters

- out - [out] Output tree to be built
- inp - [in] Input tree
- maxIter - [in] Maximum number of refinement iterations in output tree
template<int $\mathrm{D}>$
void mrcpp: :build_grid(FunctionTree<D> \&out, FunctionTreeVector<D> \&inp, int maxIter)
Build empty grid based on several MW function representation.

The grid of the output function will be EXTENDED with all existing nodes in all corresponding input functions, using the general algorithm:

- Loop through current leaf nodes of the output tree
- Refine node if the corresponding node in one of the inputs has children
- Repeat until all input nodes are covered or maxIter is reached
- maxIter < 0 means no bound

Note: This algorithm will start at whatever grid is present in the out tree when the function is called. This means that the final output grid will contain (at least) the union of the nodes of all input trees (unless maxIter is reached).

Parameters

- out - [out] Output tree to be built
- inp - [in] Input tree vector
- maxIter - [in] Maximum number of refinement iterations in output tree
template<int D>
void mrcpp: :copy_grid (FunctionTree<D> \&out, FunctionTree<D> \&inp)
Build empty grid that is identical to another MW grid.

Note: The difference from the corresponding build_grid function is that this will first clear the grid of the out function, while build_grid will extend the existing grid.

Parameters

- out - [out] Output tree to be built
- inp - [in] Input tree
template<int $\mathrm{D}>$

```
void mrcpp::clear_grid(FunctionTree<D> &out)
```

Clear the MW coefficients of a function representation.

Note: This will only clear the MW coefs in the existing nodes, it will not change the grid of the function. Use FunctionTree: :clear() to remove all grid refinement as well.

Parameters

out - [inout] Output function to be cleared
void mrcpp: : FunctionTree:: clear ()
Remove all nodes in the tree.
Leaves the tree in the same state as after construction, i.e. undefined tree structure containing only root nodes without coefficients. The assigned memory, including branch and leaf nodes, (nodeChunks in NodeAllocator) is NOT released, but is immediately available to the new function.

8.2.3 Changing FunctionTrees

There are also a number of in-place operations that change the MW coefficients of a given defined FunctionTree. All changing operations require that the FunctionTree is in a defined state.
void mrcpp: : FunctionTree: :rescale(double c)
In-place multiplication by a scalar, fixed grid.

The leaf node point values of the function will be in-place multiplied by the given coefficient, no grid refinement.

Parameters

c - [in] Scalar coefficient
void mrcpp: : FunctionTree: : normalize()
In-place rescaling by a function norm $\|f\|^{-1}$, fixed grid.
void mrcpp: : FunctionTree: :add(double c, FunctionTree<D> \&inp)
In-place addition with MW function representations, fixed grid.

The input function will be added in-place on the current grid of the function, i.e. no further grid refinement.

Parameters

- c - [in] Numerical coefficient of input function
- inp - [in] Input function to add
void mrcpp: : FunctionTree: :multiply (double c, FunctionTree<D> \&inp)
In-place multiplication with MW function representations, fixed grid.

The input function will be multiplied in-place on the current grid of the function, i.e. no further grid refinement.

Parameters

- c - [in] Numerical coefficient of input function
- inp - [in] Input function to multiply
void mrcpp::FunctionTree::square()
In-place square of MW function representations, fixed grid.
The leaf node point values of the function will be in-place squared, no grid refinement.
void mrcpp: : FunctionTree: :power (double p)
In-place power of MW function representations, fixed grid.

The leaf node point values of the function will be in-place raised to the given power, no grid refinement.

Parameters
 p - [in] Numerical power

void mrcpp: : FunctionTree: :map(FMap fmap)
In-place mapping with a predefined function $f(x)$, fixed grid.

The input function will be mapped in-place on the current grid of the function, i.e. no further grid refinement.

Parameters
 fmap - [in] mapping function

int mrcpp: : FunctionTree: : crop (double prec, double splitFac $=1.0$, bool absPrec $=$ true)
Reduce the precision of the tree by deleting nodes.

This will run the tree building algorithm in "reverse", starting from the leaf nodes, and perform split checks on each node based on the given precision and the local wavelet norm.

Note: The splitting factor appears in the threshold for the wavelet norm as $\|w\|<2^{-s n / 2}\|f\| \epsilon$. In principal, \mathbf{s} should be equal to the dimension; in practice, it is set to $s=1$.

Parameters

- prec - New precision criterion
- splitFac - Splitting factor: 1, 2 or 3
- absPrec - Use absolute precision
template<int D>
int mrcpp: :refine_grid(FunctionTree<D>\&out, int scales)
Refine the grid of a MW function representation.

This will split ALL leaf nodes in the tree the given number of times, then it will compute scaling coefs of the new nodes, thus leaving the function representation unchanged, but on a larger grid.

Parameters

- out - [inout] Output tree to be refined
- scales - [in] Number of refinement levels

Returns

The number of nodes that were split
template<int $\mathrm{D}>$
int mrcpp: : refine_grid(FunctionTree<D> \&out, double prec, bool absPrec)
Refine the grid of a MW function representation.

This will first perform a split check on the existing leaf nodes in the tree based on the provided precision parameter, then it will compute scaling coefs of the new nodes, thus leaving the function representation unchanged, but (possibly) on a larger grid.

Parameters

- out - [inout] Output tree to be refined
- prec - [in] Precision for initial split check
- absPrec - [in] Build output tree based on absolute precision

Returns

The number of nodes that were split
template<int D>
int mrcpp: :refine_grid(FunctionTree<D> \&out, FunctionTree<D> \&inp)
Refine the grid of a MW function representation.

This will first perform a split check on the existing leaf nodes in the output tree based on the structure of the input tree (same as build_grid), then it will compute scaling coefs of the new nodes, thus leaving the function representation unchanged, but on a larger grid.

Parameters

- out - [inout] Output tree to be refined
- inp - [in] Input tree that defines the new grid

Returns

The number of nodes that were split

8.2.4 File I/O

void mrcpp: : FunctionTree: :saveTree(const std::string \&file)
Write the tree structure to disk, for later use.

Parameters

file - [in] File name, will get ".tree" extension
void mrcpp: :FunctionTree::loadTree (const std::string \&file)
Read a previously stored tree structure from disk.

Note: This tree must have the exact same MRA the one that was saved

Parameters

file - [in] File name, will get ".tree" extension

8.2.5 Extracting data

Given a FunctionTree that is a well defined function representation, the following data can be extracted:
double mrcpp: : FunctionTree: :integrate() const

Returns

Integral of the function over the entire computational domain
virtual double mrcpp: : FunctionTree: :evalf(const Coord<D>\&r) const override

Abstract

Note: This will only evaluate the scaling part of the leaf nodes in the tree, which means that the function values will not be fully accurate. This is done to allow a fast and const function evaluation that can be done in OMP parallel. If you want to include also the final wavelet part you can call the corresponding evalf_precise function, or you can manually extend the MW grid by one level before evaluating, using mrcpp: :refine_grid(tree, 1)

Parameters

\mathbf{r} - [in] Cartesian coordinate

Returns

Function value in a point, out of bounds returns zero
inline double mrcpp: :MWTree::getSquareNorm() const

Returns

Squared L2 norm of the function
inline int mrcpp: :MWTree: :getNNodes() const

Returns

the total number of nodes in the tree
int mrcpp::MWTree::getSizeNodes() const

Returns

Size of all MW coefs in the tree, in kB
template<int D>
double mrcpp: : dot (FunctionTree<D> \&bra, FunctionTree<D>\&ket)
The dot product is computed with the trees in compressed form, i.e. scaling coefs only on root nodes, wavelet coefs on all nodes. Since wavelet functions are orthonormal through ALL scales and the root scaling functions are orthonormal to all finer level wavelet functions, this becomes a rather efficient procedure as you only need to compute the dot product where the grids overlap.

Parameters

- bra - [in] Bra side input function
- ket - [in] Ket side input function

Returns

Dot product <bra|ket> of two MW function representations

8.3 FunctionTreeVector

The FunctionTreeVector is simply an alias for a std: :vector of std::tuple containing a numerical coefficient and a FunctionTree pointer.
template<int D>
void mrcpp: : clear (FunctionTreeVector $<D>\& f s$, bool dealloc $=$ false)
Remove all entries in the vector.

Parameters

- fs - [in] Vector to clear
- dealloc - [in] Option to free FunctionTree pointer before clearing
template<int D>
double mrcpp: : get_coef(const FunctionTreeVector<D>\&fs, int i)

Parameters

- fs - [in] Vector to fetch from
- i-[in] Position in vector

Returns

Numerical coefficient at given position in vector
template<int D>
FunctionTree<D> \&mrcpp: : get_func(FunctionTreeVector<D> \&fs, int i)

Parameters

- fs - [in] Vector to fetch from
- \mathbf{i} - [in] Position in vector

Returns

FunctionTree at given position in vector
template<int $\mathrm{D}>$
int mrcpp: : get_n_nodes(const FunctionTreeVector<D> \&fs)
Parameters
fs $\boldsymbol{-}$ [in] Vector to fetch from

Returns

Total number of nodes of all trees in the vector
template<int D>
int mrcpp: : get_size_nodes (const FunctionTreeVector<D>\&fs)

Parameters

fs - [in] Vector to fetch from

Returns

Total size of all trees in the vector, in kB

8.4 Examples

8.4.1 Constructing an MRA

An MRA is defined in two steps, first the computational domain is given by a BoundingBox (D is the dimension), e.g. for a total domain of $[-32,32]^{3}$ in three dimensions (eight root boxes of size $[16]^{3}$ each):

```
int n = -4;
// Root scale defines box size 2^{-n}
std::array<int, 3> l{-1, -1, -1}; // Translation of first box [l_x, l_y,
->l_z]
std::array<int, 3> nb{2, 2, 2}; // Number of boxes [n_x,n_y,n_z]
mrcpp::BoundingBox<3> world(n, l, nb);
which is combined with a ScalingBasis to give an MRA, e.g. interpolating scaling functions of order \(k=9\) :
```

```
int N = 20; // Maximum refinement 2^{-(n+N)}
```

int N = 20; // Maximum refinement 2^{-(n+N)}
int k = 9;
int k = 9;
mrcpp::InterpolatingBasis basis(k);
mrcpp::InterpolatingBasis basis(k);
// Polynomial order
// Polynomial order
mrcpp::MultiResolutionAnalysis<D> MRA(world, basis, N);

```
mrcpp::MultiResolutionAnalysis<D> MRA(world, basis, N);
```

Two types of ScalingBasis are supported (LegendreBasis and InterpolatingBasis), and they are both available at orders $k=1,2, \ldots, 40$ (note that some operators are constructed using intermediates of order $2 k$, so in that case the maximum order available is $k=20$).

8.4.2 Working withFunctionTreeVectors

Elements can be appended to the vector using the std: :make_tuple, elements are obtained with the get_func and get_coef functions:

```
mrcpp::FunctionTreeVector<D> tree_vec; // Initialize empty vector
tree_vec.push_back(std::make_tuple(2.0, &tree_a)); // Push back pointer to FunctionTree
auto coef = mrcpp::get_coef(tree_vec, 0); // Get coefficient of first entry
auto &tree = mrcpp::get_func(tree_vec, 0); // Get function of first entry
mrcpp::clear(tree_vec, false); // Bool argument for tree destruction
```


8.4.3 Building empty grids

Sometimes it is useful to construct an empty grid based on some available information of the function that is about to be represented. This can be e.g. that you want to copy the grid of an existing FunctionTree or that an analytic function has more or less known grid requirements (like Gaussians). Sometimes it is even necessary to force the grid refinement beyond the coarsest scales in order for the adaptive refining algorithm to detect a wavelet "signal" that allows it to do its job properly (this happens for narrow Gaussians where none of the initial quadrature points hits a function value significantly different from zero).

The simplest way to build an empty grid is to copy the grid from an existing tree (assume that f _tree has been properly built so that it contains more than just root nodes)

```
mrcpp::FunctionTree<D> f_tree(MRA); // Input tree
mrcpp::FunctionTree<D> g_tree(MRA); // Output tree
mrcpp::project(prec, f_tree, f_func); // Build adaptive grid for f_tree
mrcpp::copy_grid(g_tree, f_tree); // Copy grid from f_tree to g_tree
```

Passing an analytic function as argument to the generator will build a grid based on some predefined information of the function (if there is any, otherwise it will do nothing)

```
mrcpp::RepresentableFunction<D> func; // Analytic function
mrcpp::FunctionTree<D> tree(MRA); // Output tree
mrcpp::build_grid(tree, func); // Build grid based on f_func
```

The lambda analytic functions do not provide such information, this must be explicitly implemented as a RepresentableFunction sub-class (see MRCPP programmer's guide for details).

Actually, the effect of the build_grid is to extend the existing grid with any missing nodes relative to the input. There is also a version of build_grid taking a FunctionTree argument. Its effect is very similar to the copy_grid above, with the only difference that now the output grid is extended with the missing nodes (e.i. the nodes that are already there are not removed first). This means that we can build the union of two grids by successive applications of build_grid

```
mrcpp::FunctionTree<D> f_tree(MRA); // Construct empty grid of root nodes
mrcpp::build_grid(f_tree, g_tree); // Extend f with missing nodes relative to g
mrcpp::build_grid(f_tree, h_tree); // Extend f with missing nodes relative to h
```

In contrast, doing the same with copy_grid would clear the f_tree grid in between, and you would only get a (identical) copy of the last h_tree grid, with no memory of the g_tree grid that was once there. One can also make the grids of two functions equal to their union

```
mrcpp::build_grid(f_tree, g_tree); // Extend f with missing nodes relative to g
mrcpp::build_grid(g_tree, f_tree); // Extend g with missing nodes relative to f
```

The union grid of several trees can be constructed in one go using a FunctionTreeVector

```
mrcpp::FunctionTreeVector<D> inp_vec;
inp_vec.push_back(std::make_tuple(1.0, tree_1));
inp_vec.push_back(std::make_tuple(1.0, tree_2));
inp_vec.push_back(std::make_tuple(1.0, tree_3));
mrcpp::FunctionTree<D> f_tree(MRA);
mrcpp::build_grid(f_tree, inp_vec); // Extend f with missing nodes from all trees in
->inp_vec
```


8.4.4 Projection

The project function takes an analytic D-dimensional scalar function (which can be defined as a lambda function or one of the explicitly implemented sub-classes of the RepresentableFunction base class in MRCPP) and projects it with the given precision onto the MRA defined by the FunctionTree. E.g. a unit charge Gaussian is projected in the following way (the MRA must be initialized as above)

```
// Defining an analytic function
double beta = 10.0;
double alpha = std::pow(beta/pi, 3.0/2.0);
auto func = [alpha, beta] (const mrcpp::Coord<3> &r) -> double {
    double R = std::sqrt(r[0]*r[0] + r[1]*r[1] + r[2]*r[2]);
    return alpha*std::exp(-beta*R*R);
};
double prec = 1.0e-5;
```

```
mrcpp:: FunctionTree<3> tree(MRA);
mrcpp::project(prec, tree, func);
```

This projection will start at the default initial grid (only the root nodes of the given MRA), and adaptively build the full grid. Alternatively, the grid can be estimated a priori if the analytical function has some known features, such as for Gaussians:

```
double prec; // Precision of the projection
int max_iter; // Maximum levels of refinement
mrcpp::GaussFunc<D> func; // Analytic Gaussian function
mrcpp::FunctionTree<D> tree(MRA); // Output tree
mrcpp::build_grid(tree, func); // Empty grid from analytic function
mrcpp::project(prec, tree, func, max_iter); // Starts projecting from given grid
```

This will first produce an empty grid suited for representing the analytic function func (this is meant as a way to make sure that the projection starts on a grid where the function is actually visible, as for very narrow Gaussians, it's not meant to be a good approximation of the final grid) and then perform the projection on the given numerical grid. With a negative prec (or max_iter $=0$) the projection will be performed strictly on the given initial grid, with no further refinements.

8.4.5 Addition

Arithmetic operations in the MW representation are performed using the FunctionTreeVector, and the general sum $f=\sum_{i} c_{i} f_{i}(x)$ is done in the following way

```
double a, b, c;
// Addition parameters
mrcpp::FunctionTree<D> a_tree(MRA); // Input function
mrcpp::FunctionTree<D> b_tree(MRA); // Input function
mrcpp::FunctionTree<D> c_tree(MRA); // Input function
mrcpp::FunctionTreeVector<D> inp_vec; // Vector to hold input functions
inp_vec.push_back(std::make_tuple(a, &a_tree)); // Append to vector
inp_vec.push_back(std::make_tuple(b, &b_tree)); // Append to vector
inp_vec.push_back(std::make_tuple(c, &c_tree)); // Append to vector
mrcpp::FunctionTree<D> f_tree(MRA); // Output function
mrcpp::add(prec, f_tree, inp_vec); // Adaptive addition
```

The default initial grid is again only the root nodes, and a positive prec is required to build an adaptive tree structure for the result. The special case of adding two functions can be done directly without initializing a FunctionTreeVector

```
mrcpp::FunctionTree<D> f_tree(MRA);
mrcpp::add(prec, f_tree, a, a_tree, b, b_tree);
```

Addition of two functions is usually done on their (fixed) union grid

```
mrcpp::FunctionTree<D> f_tree(MRA); // Construct empty root grid
mrcpp::build_grid(f_tree, a_tree); // Copy grid of g
mrcpp::build_grid(f_tree, b_tree); // Copy grid of h
mrcpp::add(-1.0, f_tree, a, a_tree, b, b_tree); // Add functions on fixed grid
```

Note that in the case of addition there is no extra information to be gained by going beyond the finest refinement levels of the input functions, so the union grid summation is simply the best you can do, and adding a positive prec will not make a difference. There are situations where you want to use a smaller grid, though, e.g. when performing a unitary transformation among a set of FunctionTrees. In this case you usually don't want to construct all the output functions on the union grid of all the input functions, and this can be done by adding the functions adaptively starting from root nodes.

If you have a summation over several functions but want to perform the addition on the grid given by the first input function, you first copy the wanted grid and then perform the operation on that grid

```
mrcpp: :FunctionTreeVector<D> inp_vec;
inp_vec.push_back(std::make_tuple(a, a_tree));
inp_vec.push_back(std::make_tuple(b, b_tree));
inp_vec.push_back(std::make_tuple(c, c_tree));
mrcpp::FunctionTree<D> f_tree(MRA); // Construct empty root grid
mrcpp::copy_grid(f_tree, get_func(inp_vec, 0)); // Copy grid of first input function
mrcpp::add(-1.0, f_tree, inp_vec); // Add functions on fixed grid
```

Here you can of course also add a positive prec to the addition and the resulting function will be built adaptively starting from the given initial grid.

8.4.6 Multiplication

The multiplication follows the exact same syntax as the addition, where the product $f=\prod_{i} c_{i} f_{i}(x)$ is done in the following way

```
double a, b, c;
mrcpp::FunctionTree<D> a_tree(MRA); // Input function
mrcpp::FunctionTree<D> b_tree(MRA); // Input function
mrcpp::FunctionTree<D> c_tree(MRA); // Input function
mrcpp::FunctionTreeVector<D> inp_vec; // Vector to hold input functions
inp_vec.push_back(std::make_tuple(a, &a_tree)); // Append to vector
inp_vec.push_back(std::make_tuple(b, &b_tree)); // Append to vector
inp_vec.push_back(std::make_tuple(c, &c_tree)); // Append to vector
mrcpp::FunctionTree<D> f_tree(MRA); // Output function
mrcpp::multipy(prec, f_tree, inp_vec); // Adaptive multiplication
```

In the special case of multiplying two functions the coefficients are collected into one argument

```
mrcpp::FunctionTree<D> f_tree(MRA);
mrcpp::multiply(prec, f_tree, a*b, a_tree, b_tree);
```

For multiplications, there might be a loss of accuracy if the product is restricted to the union grid. The reason for this is that the product will contain signals of higher frequency than each of the input functions, which require a higher grid refinement for accurate representation. By specifying a positive prec you will allow the grid to adapt to the higher frequencies, but it is usually a good idea to restrict to one extra refinement level beyond the union grid (by setting max_iter=1) as the grids are not guaranteed to converge for such local operations (like arithmetics, derivatives and function mappings)

```
mrcpp::FunctionTree<D> f_tree(MRA);
// Construct empty root grid
mrcpp::build_grid(f_tree, a_tree);
// Copy grid of a
```

(continues on next page)
(continued from previous page)

```
mrcpp::build_grid(f_tree, b_tree);
    // Copy grid of b
mrcpp::multiply(prec, f_tree, a*b, a_tree, b_tree, 1); // Allow 1 extra refinement
```


8.4.7 Re-using grids

Given a FunctionTree that is a valid function representation, we can clear its MW expansion coefficients as well as its grid refinement

```
mrcpp : : FunctionTree<D> tree(MRA);
// tree is an undefined function
mrcpp::project(prec, tree, f_func);
// tree represents analyticu
function f
tree.clear();
mrcpp::project(prec, tree, f_func);
/ tree is an undefined function
// tree represents analyticu
function g
```

This action will leave the FunctionTree in the same state as after construction (undefined function, only root nodes), and its coefficients can now be re-computed.

In certain situations it might be desireable to separate the actions of computing MW coefficients and refining the grid. For this we can use the refine_grid, which will adaptively refine the grid one level (based on the wavelet norm and the given precision) and project the existing function representation onto the new finer grid

```
mrcpp::refine_grid(tree, prec);
```

E.i., this will not change the function that is represented in tree, but it might increase its grid size. The same effect can be made using another FunctionTree argument instead of the precision parameter

```
mrcpp::refine_grid(tree_out, tree_in);
```

which will extend the grid of tree_out in the same way as build_grid as shown above, but it will keep the function representation in tree_out.

This functionality can be combined with clear_grid to make a "manual" adaptive building algorithm. One example where this might be useful is in iterative algorithms where you want to fix the grid size for all calculations within one cycle and then relax the grid in the end in preparation for the next iteration. The following is equivalent to the adaptive projection above (refine_grid returns the number of new nodes that were created in the process)

```
int n_nodes = 1;
while (n_nodes > 0) {
    mrcpp::project(-1.0, tree, func);
    n_nodes = mrcpp::refine_grid(tree, prec);
    if (n_nodes > 0) mrcpp::clear_grid(tree); // Clear grid for next iteration
}
```


MWOPERATORS

The MW operators discussed in this chapter is available to the application program by including:

```
#include "MRCPP/MWOperators"
```

template<int D>
class MWOperator
Fixme.
Fixme
Subclassed by mrcpp::ConvolutionOperator< $3>$, mrcpp::ConvolutionOperator< D >, mrcpp::DerivativeOperator< D >

9.1 ConvolutionOperator

Note: The convolution operators have separate precision parameters for their construction and application. The build_prec argument to the operator constructors will affect e.g. the number of terms in the separated representations of the Poisson/Helmholtz approximations, as well as the operator bandwidth. The apply_prec argument to the apply function relates only to the adaptive construction of the output function, based on a wavelet norm error estimate.
template<int D>
class IdentityConvolution : public mrcpp::ConvolutionOperator<D>
Convolution with an identity kernel.
The identity kernel (Dirac's delta function) is approximated by a narrow Gaussian function: $I\left(r-r^{\prime}\right)=\delta(r-$ $\left.r^{\prime}\right) \approx \alpha e^{-\beta\left(r-r^{\prime}\right)^{2}}$

Public Functions

IdentityConvolution(const MultiResolutionAnalysis $<D>$ \&mra, double prec)
Constructor of the IdentityConvolution object.

This will project a kernel of a single gaussian with exponent sqrt(10/build_prec).

Parameters

- mra - [in] Which MRA the operator is defined
- prec - [in] Build precision, closeness to delta function

Returns

New IdentityConvolution object
IdentityConvolution(const MultiResolutionAnalysis<D>\&mra, double prec, int root, int reach =1) Constructor of the IdentityConvolution object in case of Periodic Boundary Conditions (PBC)

This will project a kernel of a single gaussian with exponent sqrt(10/build_prec). This version of the constructor is used for calculations within periodic boundary conditions (PBC). The root parameter is the coarsest negative scale at wich the operator is applied. The reach parameter is the bandwidth of the operator at the root scale. For details see MWOperator

Parameters

- mra - [in] Which MRA the operator is defined
- prec - [in] Build precision, closeness to delta function
- root - [in] root scale of operator.
- reach - [in] width at root scale (applies to periodic boundary conditions)

Returns

New IdentityConvolution object
template<int $\mathrm{D}>$
class DerivativeConvolution : public mrcpp::ConvolutionOperator<D>
Convolution with a derivative kernel.
Derivative operator written as a convolution. The derivative kernel (derivative of Dirac's delta function) is approximated by the derivative of a narrow Gaussian function: $D^{x}\left(r-r^{\prime}\right)=\frac{d}{d x} \delta\left(r-r^{\prime}\right) \approx \frac{d}{d x} \alpha e^{-\beta\left(r-r^{\prime}\right)^{2}}$
NOTE: This is not the recommended derivative operator for practial calculations, it's a proof-of-concept operator. Use the ABGVOperator for "cuspy" functions and the BSOperator for smooth functions.

Public Functions

DerivativeConvolution(const MultiResolutionAnalysis<D>\&mra, double prec)
This will project a kernel of a single differentiated gaussian with exponent sqrt(10/build_prec).

Parameters

- mra - [in] Which MRA the operator is defined
- pr - [in] Build precision, closeness to delta function

Returns

New DerivativeConvolution object
class PoissonOperator : public mrcpp::ConvolutionOperator<3>
Convolution with the Poisson Green's function kernel.
The Poisson kernel is approximated as a sum of Gaussian functions in order to allow for separated application of the operator in the Cartesian directions: $P\left(r-r^{\prime}\right)=\frac{1}{\left|r-r^{\prime}\right|} \approx \sum_{m}^{M} \alpha_{m} e^{-\beta_{m}\left(r-r^{\prime}\right)^{2}}$

Public Functions

PoissonOperator (const MultiResolutionAnalysis $<3>\& m r a$, double prec)
This will construct a gaussian expansion to approximate $1 / \mathrm{r}$, and project each term into a one-dimensional MW operator. Subsequent application of this operator will apply each of the terms to the input function in all Cartesian directions.

Parameters

- mra - [in] Which MRA the operator is defined
- pr - [in] Build precision, closeness to $1 / \mathrm{r}$

Returns

New PoissonOperator object
class HelmholtzOperator : public mrcpp::ConvolutionOperator<3>
Convolution with the Helmholtz Green's function kernel.
The Helmholtz kernel is approximated as a sum of gaussian functions in order to allow for separated application of the operator in the Cartesian directions: $H\left(r-r^{\prime}\right)=\frac{e^{-\mu\left|r-r^{\prime}\right|}}{\left|r-r^{\prime}\right|} \approx \sum_{m}^{M} \alpha_{m} e^{-\beta_{m}\left(r-r^{\prime}\right)^{2}}$

Public Functions

HelmholtzOperator (const MultiResolutionAnalysis<3> \&mra, double m, double prec)
This will construct a gaussian expansion to approximate $\exp (-\mathrm{mu} * \mathrm{r}) / \mathrm{r}$, and project each term into a onedimensional MW operator. Subsequent application of this operator will apply each of the terms to the input function in all Cartesian directions.

Parameters

- mra - [in] Which MRA the operator is defined
- m - [in] Exponential parameter of the operator
- pr - [in] Build precision, closeness to $\exp (-\mathrm{mu} * \mathrm{r}) / \mathrm{r}$

Returns

New HelmholtzOperator object
template<int D>
void mrcpp : : apply (double prec, FunctionTree<D> \&out, ConvolutionOperator<D> \& oper, FunctionTree<D> \&inp, int maxIter, bool absPrec)
Application of MW integral convolution operator.

The output function will be computed using the general algorithm:

- Compute MW coefs on current grid
- Refine grid where necessary based on prec
- Repeat until convergence or maxIter is reached
- prec $<\boldsymbol{\theta}$ or maxIter $=0$ means NO refinement
- maxIter <0 means no bound

Note: This algorithm will start at whatever grid is present in the out tree when the function is called (this grid should however be EMPTY, e.i. no coefs).

Parameters

- prec - [in] Build precision of output function
- out - [out] Output function to be built
- oper - [in] Convolution operator to apply
- inp - [in] Input function
- maxIter - [in] Maximum number of refinement iterations in output tree, default -1
- absPrec - [in] Build output tree based on absolute precision, default false
template<int $\mathrm{D}>$
void mrcpp : : apply (double prec, FunctionTree<D> \&out, ConvolutionOperator<D> \&oper, FunctionTree<D> \&inp, FunctionTreeVector<D> \& precTrees, int maxIter, bool absPrec)
Application of MW integral convolution operator.

The output function will be computed using the general algorithm:

- Compute MW coefs on current grid
- Refine grid where necessary based on scaled prec
- Repeat until convergence or maxIter is reached
- prec $<\boldsymbol{\theta}$ or maxIter $=0$ means NO refinement
- maxIter < 0 means no bound

The precision will be scaled locally by the maxNorms of the precTrees input vector.

Note: This algorithm will start at whatever grid is present in the out tree when the function is called (this grid should however be EMPTY, e.i. no coefs).

Parameters

- prec - [in] Build precision of output function
- out - [out] Output function to be built
- oper - [in] Convolution operator to apply
- inp - [in] Input function
- precTrees - [in] Precision trees
- maxIter - [in] Maximum number of refinement iterations in output tree, default -1
- absPrec - [in] Build output tree based on absolute precision, default false

9.2 DerivativeOperators

Note: The derivative operators have clearly defined requirements on the output grid structure, based on the grid of the input function. This means that there is no real grid adaptivity, and thus no precision parameter is needed for the application of such an operator.
template<int D>
class ABGVOperator : public mrcpp::DerivativeOperator<D>
Derivative operator as defined by Alpert, Beylkin, Ginez and Vozovoi, J Comp Phys 182, 149-190 (2002).
NOTE: This is the recommended derivative operator for "cuspy" or discontinuous functions. The BSOperator is recommended for smooth functions.

Public Functions

ABGVOperator (const MultiResolutionAnalysis $<D>\& m r a$, double a, double b)
Boundary parameters correspond to:

- $a=0.0 \mathrm{~b}=0.0$: Strictly local "center" difference
- $a=0.5 b=0.5$: Semi-local central difference
- $a=1.0 \mathrm{~b}=0.0$: Semi-local forward difference
- $a=0.0 b=1.0$: Semi-local backward difference

Parameters

- mra - [in] Which MRA the operator is defined
- a - [in] Left boundary condition
- b-[in] Right boundary condition

Returns

New ABGVOperator object
template<int $\mathrm{D}>$
class PHOperator : public mrcpp::DerivativeOperator<D>
Derivative operator based on the smoothing derivative of Pavel Holoborodko .
NOTE: This is not the recommended derivative operator for practial calculations, it's a proof-of-concept operator. Use the ABGVOperator for "cuspy" functions and the BSOperator for smooth functions.

Public Functions

PHOperator (const MultiResolutionAnalysis<D> \&mra, int order)

Parameters

- mra - [in] Which MRA the operator is defined
- order - [in] Derivative order, defined for 1 and 2

Returns

New PHOperator object
template<int D>
class BSOperator : public mrcpp::DerivativeOperator<D>
B-spline derivative operator as defined by Anderson etal, J Comp Phys X 4, 100033 (2019).
NOTE: This is the recommended derivative operator only for smooth functions. Use the ABGVOperator if the function has known cusps or discontinuities.

Public Functions

explicit BSOperator (const MultiResolutionAnalysis<D> \&mra, int order)

Parameters

- mra - [in] Which MRA the operator is defined
- order - [in] Derivative order, defined for 1, 2 and 3

Returns

New BSOperator object
template<int D>
void mrcpp: : apply (FunctionTree<D> \&out, DerivativeOperator<D> \&oper, FunctionTree<D> \&inp, int dir)
Application of MW derivative operator.

The output function will be computed on a FIXED grid that is predetermined by the type of derivative operator. For a strictly local operator (ABGV_00), the grid is an exact copy of the input function. For operators that involve also neighboring nodes (ABGV_55, PH, BS) the base grid will be WIDENED by one node in the direction of application (on each side).

Note: The output function should contain only empty root nodes at entry.

Parameters

- out - [out] Output function to be built
- oper - [in] Derivative operator to apply
- inp - [in] Input function
- $\operatorname{dir}-[i n]$ Direction of derivative
template<int D>
void mrcpp: : divergence (FunctionTree<D> \&out, DerivativeOperator<D> \&oper, FunctionTreeVector<D>\&inp) Calculation of divergence of a function vector.

The derivative operator is applied in each Cartesian direction to the corresponding components of the input vector and added up to the final output. The grid of the output is fixed as the union of the component grids (including any derivative widening, see derivative apply).

Note:

- The length of the input vector must be the same as the template dimension D.
- The output function should contain only empty root nodes at entry.

Parameters

- out - [out] Output function
- oper - [in] Derivative operator to apply
- inp - [in] Input function vector
template<int D>
FunctionTreeVector<D> mrcpp: :gradient (DerivativeOperator<D> \&oper, FunctionTree<D> \&inp)
Calculation of gradient vector of a function.

The derivative operator is applied in each Cartesian direction to the input function and appended to the output vector.

Note: The length of the output vector will be the template dimension D.

Parameters

- oper - [in] Derivative operator to apply
- inp - [in] Input function

Returns

FunctionTreeVector containing the gradient

9.3 Examples

9.3.1 PoissonOperator

The electrostatic potential g arising from a charge distribution f are related through the Poisson equation

$$
-\nabla^{2} g(r)=f(r)
$$

This equation can be solved with respect to the potential by inverting the differential operator into the Green's function integral convolution operator

$$
g(r)=\int \frac{1}{4 \pi\left\|r-r^{\prime}\right\|} f\left(r^{\prime}\right) d r^{\prime}
$$

This operator is available in the MW representation, and can be solved with arbitrary (finite) precision in linear complexity with respect to system size. Given an arbitrary charge dirtribution f_{-}tree in the MW representation, the potential is computed in the following way:

```
double apply_prec; // Precision for operator application
double build_prec; // Precision for operator construction
mrcpp::PoissonOperator P(MRA, build_prec); // MW representation of Poisson operator
mrcpp::FunctionTree<3> f_tree(MRA); // Input function
mrcpp::FunctionTree<3> g_tree(MRA); // Output function
mrcpp::apply(apply_prec, g_tree, P, f_tree); // Apply operator adaptively
```

The Coulomb self-interaction energy can now be computed as the dot product:

```
double E = mrcpp::dot(g_tree, f_tree);
```


9.3.2 HelmholtzOperator

The Helmholtz operator is a generalization of the Poisson operator and is given as the integral convolution

$$
g(r)=\int \frac{e^{-\mu\left\|r-r^{\prime}\right\|}}{4 \pi\left\|r-r^{\prime}\right\|} f\left(r^{\prime}\right) d r^{\prime}
$$

The operator is the inverse of the shifted Laplacian

$$
\left[-\nabla^{2}+\mu^{2}\right] g(r)=f(r)
$$

and appears e.g. when solving the SCF equations. The construction and application is similar to the Poisson operator, with an extra argument for the μ parameter

```
double apply_prec; // Precision for operator application
double build_prec; // Precision for operator construction
double mu; // Must be a positive real number
mrcpp::HelmholtzOperator H(MRA, mu, build_prec);// MW representation of Helmholtz_
->operator
mrcpp::FunctionTree<3> f_tree(MRA); // Input function
mrcpp::FunctionTree<3> g_tree(MRA); // Output function
mrcpp::apply(apply_prec, g_tree, H, f_tree); // Apply operator adaptively
```


9.3.3 ABGVOperator

The ABGV (Alpert, Beylkin, Gines, Vozovoi) derivative operator is initialized with two parameters a and b accounting for the boundary conditions between adjacent nodes, see Alpert et al.

```
double a = 0.0, b = 0.0; // Boundary conditions for operator
mrcpp::ABGVOperator<3> D(MRA, a, b); // MW derivative operator
mrcpp::FunctionTree<3> f(MRA);
mrcpp::FunctionTree<3> f_x(MRA); // Output function
mrcpp::FunctionTree<3> f_y(MRA); // Output function
```

(continued from previous page)

```
mrcpp::FunctionTree<3> f_z(MRA);
mrcpp::apply(f_x, D, f, 0);
mrcpp::apply(f_y, D, f, 1);
mrcpp::apply(f_z, D, f, 2);
```

// Output function
// Operator application in x direction
// Operator application in y direction
// Operator application in z direction

The tree structure of the output function will depend on the choice of parameters a and b : if both are zero, the output grid will be identical to the input grid; otherwise the grid will be widened by one node (on each side) in the direction of application.

9.3.4 PHOperator

The PH derivative operator is based on the noise reducing derivative of Pavel Holoborodko. This operator is also available as a direct second derivative.

```
mrcpp::PHOperator<3> D1(MRA, 1); // MW 1st derivative operator
mrcpp::PHOperator<3> D2(MRA, 2); // MW 2nd derivative operator
mrcpp::FunctionTree<3> f(MRA); // Input function
mrcpp::FunctionTree<3> f_x(MRA); // Output function
mrcpp::FunctionTree<3> f_xx(MRA); // Output function
mrcpp::apply(f_x, D1, f, 0); // Operator application in x direction
mrcpp::apply(f_xx, D2, f, 0); // Operator application in x direction
```

Special thanks to Prof. Robert J. Harrison (Stony Brook University) for sharing the operator coefficients.

9.3.5 BSOperator

The BS derivative operator is based on a pre-projection onto B-splines in order to remove the discontinuities in the MW basis, see Anderson et al. This operator is also available as a direct second and third derivative.

```
mrcpp::BSOperator<3> D1(MRA, 1);
// MW 1st derivative operator
mrcpp::BSOperator<3> D2(MRA, 2);
// MW 2nd derivative operator
mrcpp::BSOperator<3> D3(MRA, 3);
mrcpp::FunctionTree<3> f(MRA);
mrcpp::FunctionTree<3> f_x(MRA);
mrcpp::FunctionTree<3> f_yy(MRA);
mrcpp::FunctionTree<3> f_zzz(MRA);
mrcpp::apply(f_x, D1, f, 0);
mrcpp::apply(f_yy, D2, f, 1);
// Operator application in x direction
// Operator application in x direction
mrcpp::apply(f_zzz, D3, f, 2);
// MW 3nd derivative operator
// Input function
// Output function
// Output function
// Output function
// Operator application in x direction
```


GAUSSIANS

MRCPP provides some simple features for analytic Gaussian functions. These are meant to be used as a starting point for MW computations, they are not meant for heavy analytical computation, like GTO basis sets. The Gaussian features are available by including:

```
#include "MRCPP/Gaussians"
```

template<int D>
class GaussFunc : public mrcpp::Gaussian<D>
Gaussian function in D dimensions with a simple monomial in front.

- Monodimensional Gaussian (GaussFunc<1>):
$g(x)=\alpha\left(x-x_{0}\right)^{a} e^{-\beta\left(x-x_{0}\right)^{2}}$
- Multidimensional Gaussian (GaussFunc<D>):
$G(x)=\prod_{d=1}^{D} g^{d}\left(x^{d}\right)$

Public Functions

inline GaussFunc (double beta, double alpha, const Coord<D>\&pos $=\{ \}$, const std::array<int, $D>\&$ pow $=$ \{\})

Parameters

- beta - [in] Exponent, $e^{-\beta r^{2}}$
- alpha - [in] Coefficient, $\alpha e^{-r^{2}}$
- pos - [in] Position $(x-\operatorname{pos}[0]),(y-\operatorname{pos}[1]), \ldots$
- pow - [in] Monomial power, $x^{\text {pow }[0]}, y^{\text {pow[1] }}, \ldots$

Returns

New GaussFunc object
double calcCoulombEnergy (const GaussFunc<D> \&rhs) const
Compute Coulomb repulsion energy between two GaussFuncs.

Note: Both Gaussians must be normalized to unit charge $\alpha=(\beta / \pi)^{D / 2}$ for this to be correct!

Parameters

- this - [in] Left hand GaussFunc
- rhs - [in] Right hand GaussFunc

Returns

Coulomb energy
virtual double evalf (const Coord $<D>\& r$) const override

Parameters

r-[in] Cartesian coordinate

Returns

Function value in a point
virtual GaussPoly<D> differentiate(int dir) const override
Compute analytic derivative of Gaussian.

Parameters

dir - [in] Cartesian direction of derivative

Returns

New GaussPoly
GaussPoly<D> mult (const GaussFunc<D> \&rhs)
Multiply two GaussFuncs.

Parameters

- this - [in] Left hand side of multiply
- rhs - [in] Right hand side of multiply

Returns

New GaussPoly
GaussFunc<D> mult (double c)
Multiply GaussFunc by scalar.

Parameters

c - [in] Scalar to multiply

Returns

New GaussFunc
GaussExp<D> periodify (const std::array<double, $D>$ \&period, double $\mathrm{nStdDev}=4.0$) const
Generates a GaussExp that is semi-periodic around a unit-cell.
$\mathrm{nStdDev}=1,2,3$ and 4 ensures atleast $68.27 \%, 95.45 \%, 99.73 \%$ and 99.99% of the integral is conserved with respect to the integration limits.

Parameters

- period - [in] The period of the unit cell
- nStdDev - [in] Number of standard diviations covered in each direction. Default 4.0

Returns

Semi-periodic version of a Gaussian around a unit-cell
inline void normalize()
Rescale function by its norm $\|f\|^{-1}$.
template<int D>
class GaussPoly : public mrcpp::Gaussian<D>
Gaussian function in D dimensions with a general polynomial in front.

- Monodimensional Gaussian (GaussPoly<1>):

$$
g(x)=\alpha P\left(x-x_{0}\right) e^{-\beta\left(x-x_{0}\right)^{2}}
$$

- Multidimensional Gaussian (GaussFunc<D>):
$G(x)=\prod_{d=1}^{D} g^{d}\left(x^{d}\right)$

Public Functions

GaussPoly (double alpha $=0.0$, double coef $=1.0$, const Coord<D>\&pos $=\{ \}$, const std::array<int, $D>$ \&power $=\{ \}$)

Parameters

- beta - [in] Exponent, $e^{-\beta r^{2}}$
- alpha - [in] Coefficient, $\alpha e^{-r^{2}}$
- pos - [in] Position $(x-\operatorname{pos}[0]),(y-\operatorname{pos}[1]), \ldots$
- pow - [in] Max polynomial degree, $P_{0}(x), P_{1}(y), \ldots$

Returns

New GaussPoly object
virtual double evalf(const Coord<D>\&r) const override

Parameters

\mathbf{r} - [in] Cartesian coordinate

Returns

Function value in a point
virtual GaussPoly differentiate (int dir) const override
Compute analytic derivative of Gaussian.

Parameters

dir - [in] Cartesian direction of derivative

Returns

New GaussPoly
GaussPoly<D>mult (double c)
Multiply GaussPoly by scalar.

Parameters

c - [in] Scalar to multiply

Returns

New GaussPoly
void setPoly (int d, Polynomial \&poly)
Set polynomial in given dimension.

Parameters

- d - [in] Cartesian direction
- poly - [in] Polynomial to set

GaussExp<D> periodify (const std::array<double, $D>\&$ period, double nStdDev $=4.0$) const
Generates a GaussExp that is semi-periodic around a unit-cell.
$\mathrm{nStdDev}=1,2,3$ and 4 ensures atleast $68.27 \%, 95.45 \%, 99.73 \%$ and 99.99% of the integral is conserved with respect to the integration limits.

Parameters

- period - [in] The period of the unit cell
- nStdDev - [in] Number of standard diviations covered in each direction. Default 4.0

Returns

Semi-periodic version of a Gaussian around a unit-cell
inline void normalize()
Rescale function by its norm $\|f\|^{-1}$.
template<int D>
class GaussExp : public mrcpp::RepresentableFunction<D>
Gaussian expansion in D dimensions.

- Monodimensional Gaussian expansion:
$g(x)=\sum_{m=1}^{M} g_{m}(x)=\sum_{m=1}^{M} \alpha_{m} e^{-\beta\left(x-x^{0}\right)^{2}}$
- Multidimensional Gaussian expansion:

$$
G(x)=\sum_{m=1}^{M} G_{m}(x)=\sum_{m=1}^{M} \prod_{d=1}^{D} g_{m}^{d}\left(x^{d}\right)
$$

Public Functions

double calcCoulombEnergy () const

Note: Each Gaussian must be normalized to unit charge $c=(\alpha / \pi)^{D / 2}$ for this to be correct!

Returns

Coulomb repulsion energy between all pairs in GaussExp, including self-interaction
virtual double evalf(const Coord $<D>\& r$) const override

Parameters

\mathbf{r} - [in] Cartesian coordinate

Returns

Function value in a point
void append (const Gaussian $<D>\& \mathrm{~g}$)
Append Gaussian to expansion.
void append (const GaussExp<D> \&g)
Append GaussExp to expansion.

10.1 Examples

A GaussFunc is a simple D-dimensional Gaussian function with a Cartesian monomial in front, e.g. in 3D:

$$
f(r)=\alpha\left(x-x_{0}\right)^{a}\left(y-y_{0}\right)^{b}\left(z-z_{0}\right)^{c} e^{-\beta\left\|r-r_{0}\right\|^{2}}
$$

```
double alpha, beta;
std::array<int, 3> pow = {a, b, c};
mrcpp::Coord<3> pos = {x_Q, y_Q, z_0};
mrcpp::GaussFunc<3> gauss(beta, alpha, pos, pow);
double E = gauss.calcCoulombEnergy(gauss); // Analytical energy
```

This Gaussian function can be used to build an empty grid based on the position and exponent. The grid will then be refined close to the center of the Gaussian, with deeper refinement for higher exponents (steeper function):

```
mrcpp: :FunctionTree<3> g_tree(MRA);
mrcpp::build_grid(g_tree, gauss); // Build empty grid
mrcpp::project(prec, g_tree, gauss); // Project Gaussian
```

GaussPoly is a generalization of the GaussFunc, where there is an arbitrary polynomial in front of the exponential

$$
f(r)=\alpha P\left(r-r_{0}\right) e^{-\beta\left\|r-r_{0}\right\|^{2}}
$$

For instance, the following function can be constructed

$$
f(r)=\alpha\left(a_{x}+b_{x} x+c_{x} x^{2}\right)\left(a_{y}+b_{y} y+c_{y} y^{2}\right)\left(a_{z}+b_{z} z+c_{z} z^{2}\right) e^{-\beta\left\|r-r_{0}\right\|^{2}}
$$

```
auto gauss_poly = GaussPoly<D>(beta, alpha, pos, pow);
// Create polynomial in x, y and z direction
auto pol_x = Polynomial(2); // 2 is the degree of the polynomial
pol_x.getCoefs() << a_x, b_x, c_x;
auto pol_y = Polynomial(2);
pol_y.getCoefs() << a_y, b_y, c_y;
auto pol_z = Polynomial(2);
pol_z.getCoefs() << a_z, b_z, c_z;
// Add polynomials to gauss_poly
guass_poly.setPoly(0, pol_x);
guass_poly.setPoly(1, pol_y);
guass_poly.setPoly(2, pol_z);
```

A GaussExp is a collection of Gaussians in the form

$$
G(r)=\sum_{i} c_{i} g_{i}(r)
$$

where g_{i} can be either GaussFunc or GaussPoly

$$
g_{i}(r)=\alpha_{i} P_{i}\left(r-r_{i}\right) e^{-\beta_{i}\left\|r-r_{i}\right\|^{2}}
$$

Individual Gaussian functions can be appended to the GaussExp and treated as a single function:

```
mrcpp::GaussExp<3> g_exp;
// Empty Gaussian expansion
for (int i = 0; i < N; i++) {
    double alpha_i, beta_i; // Individual parameters
    std::array<int, 3> pow_i;
    std::array<double, 3> pos_i;
    // Individual parameters
// Individual parameters
    mrcpp::GaussFunc<3> gauss_i(beta_i, alpha_i, pos_i, pow_i);
    g_exp.append(gauss_i); // Append Gaussian to expansion
}
mrcpp::project(prec, tree, g_exp);
// Project full expansion
```


PARALLEL

The core features of MRCPP are parallelized using a shared memory model only (OpenMP). This means that there is no intrinsic MPI parallelization (e.i. no data distribution across machines) within the library routines. However, the code comes with a small set of features that facilitate MPI work and data distribution in the host program, in the sense that entire FunctionTree objects can be located on different machines and communicated between them. Also, a FunctionTree can be shared between several MPI processes that are located on the same machine. This means that several processes have read access to the same FunctionTree, thus reducing the memory footprint, as well as the need for communication.

The MPI features are available by including:

```
#include "MRCPP/Parallel"
```


11.1 The host program

In order to utilize the MPI features of MRCPP, the MPI instance must be initialized (and finalized) by the host program, as usual:

```
MPI_Init(&argc, &argv);
int size, rank;
MPI_Comm_size(MPI_COMM_WORLD, &size); // Get MPI world size
MPI_Comm_rank(MPI_COMM_WORLD, &rank); // Get MPI world rank
MPI_Finalize();
```

For the shared memory features we must make sure that the ranks within a communicator is actually located on the same machine. When running on distributed architectures this can be achieved by creating separate communicators for each physical machine, e.g. to split MPI_COMM_WORLD into a new communicator group called MPI_COMM_SHARED that share the same physical memory space:

```
// Initialize a new communicator called MPI_COMM_SHARE
MPI_Comm MPI_COMM_SHARE;
// Split MPI_COMM_WORLD into sub groups and assign to MPI_COMM_SHARE
MPI_Comm_split_type(MPI_COMM_WORLD, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL, &MPI_COMM_
    SHARE);
```

Note that the main purpose of the shared memory feature of MRCPP is to avoid memory duplication and reduce the memory footprint, it will not automatically provide any work sharing parallelization for the construction of the shared FunctionTree.

11.2 Blocking communication

Warning: doxygenfunction: Unable to resolve function "mrcpp::send_tree" with arguments (FunctionTree<D>\&, int, int, MPI_Comm, int) in doxygen xml output for project "MRCPP" from directory: _build/xml. Potential matches:
template<int $D>$ void send_tree(FunctionTree<D> \&tree, int dst, int tag, mrcpp: :mpi_ \rightarrow comm comm, int nChunks, bool coeff)

Warning: doxygenfunction: Unable to resolve function "mrcpp::recv_tree" with arguments (FunctionTree<D>\&, int, int, MPI_Comm, int) in doxygen xml output for project "MRCPP" from directory: _build/xml. Potential matches:
template<int D> void recv_tree(FunctionTree<D> \&tree, int src, int tag, mrcpp: :mpi_ comm comm, int nChunks, bool coeff)

11.2.1 Example

A blocking send/receive means that the function call does not return until the communication is completed. This is a simple and safe option, but can lead to significant overhead if the communicating MPI processes are not synchronized.

```
mrcpp: :FunctionTree<3> tree(MRA);
// At this point tree is uninitialized on both rank 0 and 1
// Only rank 0 projects the function
if (rank == 0) mrcpp::project(prec, tree, func);
// At this point tree is projected on rank 0 but still uninitialized on rank 1
// Sending tree from rank (0 to rank 1
int tag = 111111; // Unique tag for each communication
int src=0, dst=1; // Source and destination ranks
if (rank == src) mrcpp::send_tree(tree, dst, tag, MPI_COMM_WORLD);
if (rank == dst) mrcpp::revc_tree(tree, src, tag, MPI_COMM_WORLD);
// At this point tree is projected on both rank 0 and 1
// Rank (0 clear the tree
if (rank == 0) mrcpp::clear(tree);
// At this point tree is uninitialized on rank 0 but still projected on rank 1
```


11.3 Shared memory

class SharedMemory

Shared memory block within a compute node.
This class defines a shared memory window in a shared MPI communicator. In order to allocate a FunctionTree in shared memory, simply pass a SharedMemory object to the FunctionTree constructor.

Public Functions

SharedMemory (mrcpp::mpi_comm comm, int sh_size)
SharedMemory constructor.

Parameters

- comm - [in] Communicator sharing resources
- sh_size - [in] Memory size, in MB

Warning: doxygenfunction: Unable to resolve function "mrcpp::share_tree" with arguments (FunctionTree<D>\&, int, int, MPI_Comm) in doxygen xml output for project "MRCPP" from directory: _build/xml. Potential matches:

```
- template<int D> void share_tree(FunctionTree<D> &tree, int src, int tag, mrcpp::mpi_
comm comm)
```


11.3.1 Example

The sharing of a FunctionTree happens in three steps: first a SharedMemory object is initialized with the appropriate shared memory communicator; then this object is used in the FunctionTree constructor; finally, after the FunctionTree has been properly computed, a call must be made to the share_tree function. The reason for the last function call is that the internal memory pointers needs to be updated locally on each MPI process whenever the shared memory window has been updated.

```
// Get rank within the shared group
int rank;
MPI_Comm_rank(MPI_COMM_SHARE, &rank);
// Define master and worker ranks
int master = 0;
int worker = 1;
// The tree will be shared within the given communicator
int mem_size = 1000; //MB
mrcpp::SharedMemory shared_mem(MPI_COMM_SHARE, mem_size);
mrcpp::FunctionTree<3> tree(MRA, shared_mem);
// Master rank projects the tree
if (rank == master) mrcpp::project(prec, tree, func);
// When a shared function is updated, it must be re-shared
int tag = 333333; // Unique tag for each communication
```

mrcpp:: share_tree(tree, master, tag, MPI_COMM_SHARE);
// Other ranks within the shared group can update the tree
if (rank == worker) tree.rescale(2.0);
// When a shared function is updated, it must be re-shared mrcpp:: share_tree(tree, worker, tag, MPI_COMM_SHARE);

PRINTER

MRCPP comes with a printer class to handle standard output:

```
#include "MRCPP/Printer"
```

The main purpose of this class is to provide (or suppress) any internal printing in MRCPP routines that might be useful for debugging. Also, it provides a sane printing environment for parallel computations that can also be used by the host program. By using the printing routines of this class, as opposed to the standard std: :cout, only the master thread in a OpenMP region will provide any output while all other threads remain silent. Similarly, when running a host program in MPI parallel, the mrcpp : :Printer provides three different options for handling printed output (see examples below):

- Only master rank prints to screen (stdout)
- All ranks prints to screen (stdout)
- All ranks prints to individual files

If you want only the master rank to print to an output file, this can be achieved by redirecting the output from the first option to a file (./program $>$ file.out).

class Printer

Convenience class to handle printed output.
The Printer singleton class holds the current state of the print environment. All mrcpp: : print functions, as well as the println and printout macros, take an integer print level as first argument. When the global mrcpp: : Printer is initialized with a given print level, only print statements with a lower print level will be displayed. All internal printing in MRCPP is at print level 10 or higher, so there is some flexibility left (levels 0 through 9) for adjusting the print volume within the host program.

Public Static Functions

static void init (int level $=0$, int rank $=0$, int size $=1$, const char $*$ file $=$ nullptr)
Initialize print environment.

Only print statements with lower printlevel than level will be displayed. If a file name is given, each process will print to a separate file called $\{$ file $\}$ - $\{$ rank $\}$.out. If no file name is given, only processes which initialize the printer with rank $=0$ will print to screen. By default, all ranks initialize with rank=0, i.e. all ranks print to screen by default.

Parameters

- level - [in] Desired print level of output
- rank - [in] MPI rank of current process
- size - [in] Total number of MPI processes
- file - [in] File name for printed output, will get "-\{rank \}.out" extension static inline void setScientific()

Use scientific floating point notation, e.g. 1.0e-2.
static inline void setFixed()
Use fixed floating point notation, e.g. 0.01 .
static inline int setWidth(int i)
Set new line width for printed output.

Parameters

i - [in] New width (number of characters)
Returns
Old width (number of characters)
static inline int setPrecision(int i)
Set new precision for floating point output.

Parameters

i - [in] New precision (digits after comma)

Returns

Old precision (digits after comma)
static inline int setPrintLevel(int i)
Set new print level.

Parameters

i - [in] New print level

Returns

Old print level
static inline int getWidth()

Returns

Current line width (number of characters)
static inline int getPrecision()

Returns

Current precision for floating point output (digits after comma)
static inline int getPrintLevel()

Returns

Current print level

12.1 Functions

Some convenience functions for printing output is provided within the mrcpp: :print namespace. These functions use the data of the mrcpp: : Printer class to provide pretty output of a few standard data types.
void mrcpp::print::environment (int level)
Print information about MRCPP version and build configuration.

Parameters

level - [in] Activation level for print statement
void mrcpp: :print: : separator (int level, const char \&c, int newlines = 0)
Print a full line of a single character.

Parameters

- level - [in] Activation level for print statement
- c - [in] Character to fill the line
- newlines - [in] Number of extra newlines
void mrcpp: :print: :header (int level, const std::string \&txt, int newlines $=0$, const char \&c = ' $=$ ')
Print a text header.

Parameters

- level - [in] Activation level for print statement
- txt - [in] Header text
- newlines - [in] Number of extra newlines
- c - [in] Character to fill the first line
void mrcpp: :print: : footer (int level, const Timer \&timer, int newlines = 0 , const char \&c = '=')
Print a footer with elapsed wall time.

Parameters

- level - [in] Activation level for print statement
- \mathbf{t} - [in] Timer to be evaluated
- newlines - [in] Number of extra newlines
- c - [in] Character to fill the last line
template<int D>
void mrcpp: :print: : tree (int level, const std::string \&txt, const MWTree<D>\&tree, const Timer \&timer)
Print tree parameters (nodes, memory) and wall time.

Parameters

- level - [in] Activation level for print statement
- txt - [in] Text string
- tree - [in] Tree to be printed
- timer - [in] Timer to be evaluated
void mrcpp: :print: : tree (int level, const std::string \&txt, int n, int m, double t)
Print tree parameters (nodes, memory) and wall time.

Parameters

- level - [in] Activation level for print statement
- txt - [in] Text string
- $\mathbf{n}-[\mathbf{i n}]$ Number of tree nodes
- m - [in] Memory usage (kB)
- t-[in] Wall time (sec)
void mrcpp: :print: :time(int level, const std::string \&txt, const Timer \&timer)
Print elapsed time from Timer.

Parameters

- level - [in] Activation level for print statement
- txt - [in] Text string
- timer - [in] Timer to be evaluated
void mrcpp::print::memory (int level, const std::string \&txt)
Print the current memory usage of this process, obtained from system.

Parameters

- level - [in] Activation level for print statement
- txt - [in] Text string

12.2 Macros

The following macros should replace the regular calls to std: :cout:

```
println(level, STR)
```

Print text at the given print level, with newline.

```
printout(level, STR)
```

Print text at the given print level, without newline.
The following macros will print a message along with information on where you are in the code (file name, line number and function name). Only macros that end with _ABORT will kill the program, all other will continue to run after the message is printed:

MSG_INFO(STR)

Print info message.

MSG_WARN(STR)

Print warning message.

MSG_ERROR(STR)

Print error message, no abort.

MSG_ABORT(STR)

Print error message and abort.

INVALID_ARG_ABORT

You have passed an invalid argument to a function.

NOT_IMPLEMENTED_ABORT

You have reached a point in the code that is not yet implemented.

NOT_REACHED_ABORT

You have reached a point that should not be reached, bug or inconsistency.

NEEDS_TESTING

You have reached an experimental part of the code, results cannot be trusted.

NEEDS_FIX(STR)

You have hit a known bug that is yet to be fixed, results cannot be trusted.

12.3 Examples

Using the print level to adjust the amount of output:

```
int level = 10;
mrcpp::Printer::init(level); // Initialize printer with printlevel 10
println( 0, "This is printlevel 0"); // This will be displayed at printlevel 10
println(10, "This is printlevel 10"); // This will be displayed at printlevel 10
println(11, "This is printlevel 11"); // This will NOT be displayed at printlevel 10
```

Using headers and footers to get pretty output:

```
using namespace mrcpp;
Timer timer; // Start timer
project(prec, tree, func); // Project function
double integral = tree.integrate(); // Integrate function
timer.stop();
    // Stop timer
print::header(0, "Projecting analytic function");
print::tree(0, "Projected function", tree, timer);
print::value(0, "Integrated function", integral, "(au)");
print::footer(0, timer);
```

This will produce the following output:

Projecting analytic function			
Projected function	520 nds	16 MB	0.09 sec
Integrated function	(au)	9.99999	$99992 \mathrm{e}-01$
Wall time: 9.32703e-02 sec			

As mentioned above, when running in MPI parallel there are three different ways of handling printed output (master to stdout, all to stdout or all to files). These can be chosen by adding appropriate arguments to init. The default setting will in a parallel environment have all MPI ranks printing to screen, but by adding MPI info to the printer, we can separate the output of the different ranks:

```
int level = 10;
int wrank, wsize;
MPI_Comm_rank(MPI_COMM_WORLD, &wrank); // Get my rank
MPI_Comm_size(MPI_COMM_WORLD, &wsize); // Get total number of ranks
// All ranks will print to screen
mrcpp::Printer::init(level);
// Only master rank will print to screen
mrcpp::Printer::init(level, wrank, wsize);
// All ranks will print to separate files called filename-<rank>.out
mrcpp::Printer::init(level, wrank, wsize, "filename");
```


PLOTTER

MRCPP comes with its own plotter class which can be used by the host program to generate data files for visualization using e.g. gnuplot, paraview, blob and geomview. These features are available by including:

```
#include "MRCPP/Plotter"
```

template<int D>
class Plotter
Class for plotting multivariate functions.
This class will generate an equidistant grid in one (line), two (surf) or three (cube) dimensions, and subsequently evaluate the function on this grid.

The grid is generated from the vectors A, B and C , relative to the origin O :

- a linePlot will plot the line spanned by A , starting from O
- a surfPlot will plot the area spanned by A and B , starting from O
- a cubePlot will plot the volume spanned by A, B and C , starting from O

The vectors A, B and C do not necessarily have to be orthogonal.
The parameter D refers to the dimension of the function, not the dimension of the plot.

Public Functions

explicit Plotter (const Coord $<D>\& o=\{ \}$)

Parameters

$\mathbf{0}$ - [in] Plot origin, default ($\theta, 0, \ldots, 0$)

Returns

New Plotter object
void setSuffix (int t, const std::string \&s)
Set file extension for output file.

The file name you decide for the output will get a predefined suffix that differentiates between different types of plot.

Parameters

- t - [in] Plot type (Plotter<D>: :Line, : : Surface, : :Cube, : :Grid)
- s-[in] Extension string, default . line, . surf, . cube, . grid
void setOrigin (const Coord<D>\&o)
Set the point of origin for the plot.

Parameters

0 - [in] Plot origin, default ($\theta, 0, \ldots, 0$)
void setRange (const Coord $<D>\& \mathrm{a}$, const Coord $<D>\& \mathrm{~b}=\{ \}$, const Coord $<D>\& \mathrm{c}=\{ \}$)
Set boundary vectors A, B and C for the plot.

Parameters

- a - [in] A vector
- b - [in] B vector
- c - [in] C vector
void gridPlot (const MWTree<D> \& tree, const std::string \&fname)
Grid plot of a MWTree.

Writes a file named fname + file extension (".grid" as default) to be read by geomview to visualize the grid (of endNodes) where the multiresolution function is defined. In MPI, each process will write a separate file, and will print only nodes owned by itself (pluss the rootNodes).

Parameters

- tree - [in] MWTree to plot
- fname - [in] File name for output, without extension
void linePlot (const std::array<int, $1>\& n \mathrm{pts}$, const RepresentableFunction<D> \&func, const std::string \&fname)
Parametric plot of a function.

Plots the function func parametrically with npts[0] along the vector A starting from the origin O to a file named fname + file extension (".line" as default).

Parameters

- npts - [in] Number of points along A
- func - [in] Function to plot
- fname - [in] File name for output, without extension
void surfPlot (const std::array<int, $2>$ \&npts, const RepresentableFunction<D> \& func, const std::string \&fname)

Surface plot of a function.

Plots the function func in 2D on the area spanned by the two vectors A (npts[0] points) and B (npts[1] points), starting from the origin O , to a file named fname + file extension (".surf" as default).

Parameters

- npts - [in] Number of points along A and B
- func - [in] Function to plot
- fname - [in] File name for output, without extension
void cubePlot (const std::array<int, $3>\& n \mathrm{pts}$, const RepresentableFunction<D> \&func, const std::string \&fname)
Cubic plot of a function.

Plots the function func in 3D in the volume spanned by the three vectors A (npts[0] points), B (npts[1] points) and C (npts[2] points), starting from the origin O , to a file named fname + file extension (".cube" as default).

Parameters

- npts - [in] Number of points along A, B and C
- func - [in] Function to plot
- fname - [in] File name for output, without extension

Note: When plotting a FunctionTree, only the scaling part of the leaf nodes will be evaluated, which means that the function values will not be fully accurate. This is done to allow a fast and const function evaluation that can be done in OMP parallel. If you want to include also the final wavelet corrections to your function values, you'll have to manually extend the MW grid by one level before plotting using mrcpp: :refine_grid(tree, 1).

13.1 Examples

A parametric line plot of a three-dimensional function along the z axis $[-1,1]$:

```
mrcpp::FunctionTree<3> f_tree(MRA);
// Function to be plotted
int nPts = 1000;
mrcpp::Coord<3> o{ 0.0, 0.0,-1.0};
mrcpp::Coord<3> a{ 0.0, 0.0, 2.0};
mrcpp::Plotter<3> plot(o); // Plotter of 3D functions
plot.setRange(a); // Set plot range
plot.linePlot({nPts}, f_tree, "f_tree"); // Write to file f_tree.line
```

A surface plot of a three-dimensional function in the $x=[-2,2], y=[-1,1], z=0$ plane:

```
int aPts = 2000; // Number of points in a
int bPts = 1000; // Number of points in b
mrcpp::Coord<3> o{-2.0,-1.0, 0.0}; // Origin vector
mrcpp::Coord<3> a{ 4.0, 0.0, 0.0};
mrcpp::Coord<3> b{ 0.0, 2.0, 0.0};
mrcpp::Plotter<3> plot(o);
plot.setRange(a, b);
plot.surfPlot({aPts, bPts}, f_tree, "f_tree");
```

```
// Set plot range
```

// Set plot range

```
// Boundary vector A
```

// Boundary vector A
// Boundary vector B
// Boundary vector B
// Plotter of 3D functions
// Plotter of 3D functions
// Write to file f_tree.surf

```
// Write to file f_tree.surf
```

A cube plot of a three-dimensional function in the volume $\mathrm{x}=[-2,2], \mathrm{y}=[-1,1], \mathrm{z}=[0,2]$:

```
int aPts = 200;
// Number of points in a
int bPts = 100;
// Number of points in b
```

(continues on next page)

```
int cPts = 100;
mrcpp::Coord<3> o{-2.0,-1.0, 0.0};
mrcpp::Coord<3> a{ 4.0, 0.0, 0.0};
mrcpp::Coord<3> b{ 0.0, 2.0, 0.0};
mrcpp::Coord<3> b{ 0.0, 0.0, 2.0};
mrcpp::Plotter<3> plot(o); // Plotter of 3D functions
plot.setRange(a, b, c); // Set plot range
plot.cubePlot({aPts, bPts, cPts}, f_tree, "f_tree"); // Write to file f_tree.cube
```

A grid plot of a three-dimensional FunctionTree:

```
mrcpp::Plotter<3> plot;
// Plotter of 3D functions
plot.gridPlot(f_tree, "f_tree");
// Write to file f_tree.grid
```

MRCPP comes with a timer class which can be used by the host program:

```
#include "MRCPP/Timer"
```


class Timer

Records wall time between the execution of two lines of source code.

Public Functions

Timer (bool start_timer = true)

Parameters

start_timer - [in] option to start timer immediately

Returns

New Timer object
Timer (const Timer \&timer)

Parameters

timer - [in] Object to copy

Returns

Copy of Timer object, including its current state
Timer \& operator=(const Timer \&timer)

Parameters

timer - [in] Object to copy

Returns

Copy of Timer object, including its current state
void start()
Start timer from zero.
void resume()
Resume timer from previous time.
void stop()
Stop timer.
double elapsed() const

Returns

Current elapsed time, in seconds

14.1 Examples

The timer records wall (human) time, not CPU user time. The clock will by default start immediately after construction, and will keep running until explicitly stopped. The elapsed time can be evaluated while clock is running:

```
mrcpp::Timer timer; // This will start the timer
mrcpp::project(prec, tree, func); // Do some work
double t = timer.elapsed();
// Get time since clock started while still_
\hookrightarrowrunning
```

The timer can also be started explicitly at a later stage after construction, as well as explicitly stopped after the work is done. Then the elapsed() function will return the time spent between start() and stop():

```
mrcpp::Timer timer(false); // This will not start the timer
timer.start(); // This will start the timer
mrcpp::project(prec, tree, func);
timer.stop();
// Do some work
// This will stop the timer
double t = timer.elapsed();
// Get time spent between start and stop
```


MANUAL OVERVIEW

The following sections show detailed documentation about the classes in MRCPP for programmers.
TODO: maybe add some low level theory/figures/algorithms before showing classes, could help to understand some of the more abstract methods

15.1 MWTree

This is an introduction to the mwtree class. We write a small overarching summary of the class where we define the algorithm/equation/structure reasoning for having this class or where it fits with the rest of the code.
template<int D>
class MWTree
Base class for Multiwavelet tree structures, such as FunctionTree and OperatorTree.
The MWTree class is the base class for all tree structures needed for Multiwavelet calculations. The MWTree is a D-dimensional tree structure of MWNodes. The tree starts from a set of root nodes at a common given scale, defining the world box. The most common settings are either a single root node or 2^{D} root nodes. Other configurations are however allowed. For example, in 3D one could have a total of 12 root nodes (a $2 \times 2 \times 3$ set of root nodes). Once the tree structure is generated, each node will have a parent node (except for the root nodes) and 2^{D} child nodes (except for leaf nodes). Most of the methods deal with traversing the tree structure in different ways to fetch specific nodes. Some of them will return a node present in the tree; some other methods will generate the required node on the fly using the MW transform; some methods will return an empty pointer if the node is not present. See specific methods for details.

Subclassed by mrсрр::FunctionTree $<1>$, mrсpp $::$ FunctionTree $<3>$, mrсpp $::$ FunctionTree $<D>$

Public Functions

MWTree (const MultiResolutionAnalysis<D> \&mra, const std::string \&n)
MWTree constructor.

Creates an empty tree object, containing only the set of root nodes. The information for the root node configuration to use is in the mra object which is passed to the constructor.

Parameters

- mra - [in] the multiresolution analysis object
- \mathbf{n} - [in] the name of the tree (only for printing purposes)
virtual ~MWTree()
MWTree destructor.
void setZero()
Set the MW coefficients to zero, keeping the same tree structure.
Keeps the node structure of the tree, even though the zero function is representable at depth zero. One should then use cropTree to remove unnecessary nodes.
void clear ()
Remove all nodes in the tree.
Leaves the tree in the same state as after construction, i.e. undefined tree structure containing only root nodes without coefficients. The assigned memory, including branch and leaf nodes, (nodeChunks in NodeAllocator) is NOT released, but is immediately available to the new function.
inline double getSquareNorm() const

Returns

Squared L2 norm of the function
void calcSquareNorm()
Calculate the squared norm $\|f\|_{\ldots}^{2}$ of a function represented as a tree.
The norm is calculated using endNodes only. The specific type of norm which is computed will depend on the derived class
inline int getNNodes() const

Returns

the total number of nodes in the tree
int getNNodesAtDepth (int i) const

Parameters

depth - [in] Tree depth (0 depth is the coarsest scale) to count.

Returns

Total number of nodes in the tree, at given depth (not in use)
int getSizeNodes() const

Returns

Size of all MW coefs in the tree, in kB
inline NodeBox < D > \& getRootBox ()

Returns

void mwTransform (int type, bool overwrite = true)
Full Multiwavelet transform of the tree in either directions.

It performs a Multiwavlet transform of the whole tree. The input parameters will specify the direction (upwards or downwards) and whether the result is added to the coefficients or it overwrites them. See the documentation for the mwTransformUp and mwTransformDown for details.

$$
\begin{array}{r}
\quad\left(s_{n l}\right. \\
d_{n l} \rightleftarrows\left(s_{n+1,2 l}\right. \\
s_{n+1,2 l+1}
\end{array}
$$

Parameters

- type - [in] TopDown (from roots to leaves) or BottomUp (from leaves to roots) which specifies the direction of the MW transform
- overwrite - [in] if true, the result will overwrite preexisting coefficients.
$M W N o d e<D>*$ findNode(NodeIndex $<D>$ nIdx)
Finds and returns the node pointer with the given NodeIndex.
Recursive routine to find and return the node with a given NodeIndex. This routine returns the appropriate Node, or a NULL pointer if the node does not exist, or if it is a GenNode. Recursion starts at the appropriate rootNode.
const $M W$ Node $<D>*$ findNode(NodeIndex $<D>$ nIdx) const
Finds and returns the node pointer with the given NodeIndex, const version.
Recursive routine to find and return the node with a given NodeIndex. This routine returns the appropriate Node, or a NULL pointer if the node does not exist, or if it is a GenNode. Recursion starts at the appropriate rootNode.

$M W N o d e<D>$ \& getNode(NodeIndex < D $>\mathrm{nIdx}$)

Finds and returns the node reference with the given NodeIndex.
This routine ALWAYS returns the node you ask for. If the node does not exist, it will be generated by MW transform. Recursion starts at the appropriate rootNode and descends from this.

$M W N o d e<D>$ \& getNodeOrEndNode (NodeIndex $<D>$ nIdx)

Finds and returns the node with the given NodeIndex.
This routine returns the Node you ask for, or the EndNode on the path to the requested node, if the requested one is deeper than the leaf node ancestor. It will never create or return GenNodes. Recursion starts at the appropriate rootNode and decends from this.
const $M W$ Node $<D>$ \& getNodeOrEndNode (NodeIndex $<D>$ nIdx) const
Finds and returns the node reference with the given NodeIndex. Const version.
This routine ALWAYS returns the node you ask for. If the node does not exist, it will be generated by MW transform. Recursion starts at the appropriate rootNode and decends from this.
$M W N o d e<D>\& \operatorname{getNode}($ Coord $<D>\mathrm{r}$, int depth $=-1$)
Finds and returns the node at a given depth that contains a given coordinate.

This routine ALWAYS returns the node you ask for, and will generate nodes that do not exist. Recursion starts at the appropriate rootNode and decends from this.

Parameters

- depth - [in] requested node depth from root scale.
- $\mathbf{r}-$ [in] coordinates of an arbitrary point in space
$M W N o d e<D>$ \& getNodeOrEndNode (Coord< $<>$ r, int depth $=-1$)
Finds and returns the node at a given depth that contains a given coordinate.

This routine returns the Node you ask for, or the EndNode on the path to the requested node, and will never create or return GenNodes. Recursion starts at the appropriate rootNode and decends from this.

Parameters

- depth - [in] requested node depth from root scale.
- \mathbf{r} - [in] coordinates of an arbitrary point in space
const $M W$ Node $<D>$ \& getNodeOrEndNode (Coord $<D>$ r, int depth $=-1$) const
Finds and returns the node at a given depth that contains a given coordinate. Const version.

This routine returns the Node you ask for, or the EndNode on the path to the requested node, and will never create or return GenNodes. Recursion starts at the appropriate rootNode and decends from this.

Parameters

- depth - [in] requested node depth from root scale.
- $\mathbf{r}-$ [in] coordinates of an arbitrary point in space

MWNodeVector<D>*copyEndNodeTable()
Returns the list of all EndNodes.
copies the list of all EndNode pointers into a new vector and retunrs it.
void deleteRootNodes()
Deletes all the nodes in the tree.
This method will recursively delete all the nodes, including the root nodes. Derived classes will call this method when the object is deleted.
void resetEndNodeTable()
Recreate the endNodeTable.
the endNodeTable is first deleted and then rebuilt from scratch. It makes use of the TreeIterator to traverse the tree.
int getIx (NodeIndex < $D>$ nIdx)
gives serialIx of a node from its NodeIndex
Peter will document this!
void makeMaxSquareNorms()
sets values for maxSquareNorm in all nodes
it defines the upper bound of the squared norm $\|f\|^{2}$.. in this node or its descendents

Public Members

MWNodeVector<D> endNodeTable

Final projected nodes.

Protected Functions

virtual void mwTransformDown (bool overwrite)
Regenerates all scaling coeffs by MW transformation of existing s/w-coeffs on coarser scales.

The transformation starts at the rootNodes and proceeds recursively all the way to the leaf nodes. The existing scaling coefficeints will either be overwritten or added to. The latter operation is generally used after the operator application.

Parameters

overwrite - [in] if true the preexisting coefficients are overwritten
virtual void mwTransformUp()
Regenerates all s/d-coeffs by backtransformation.
It starts at the bottom of the tree (scaling coefficients of the leaf nodes) and it generates the scaling and wavelet coefficients if the parent node. It then proceeds recursively all the way up to the root nodes. This is generally used after a function projection to purify the coefficients obtained by quadrature at coarser scales which are therefore not precise enough.
void incrementNodeCount (int scale)
Increments node counter by one for non-GenNodes.
TO BE DOCUMENTED

Warning: : This routine is not thread safe, and must NEVER be called outside a critical region in parallel. It's way. way too expensive to lock the tree, so don't even think about it.
void decrementNodeCount (int scale)
Decrements node counter by one for non-GenNodes.
TO BE DOCUMENTED

Warning: : This routine is not thread safe, and must NEVER be called outside a critical region in parallel. It's way. way too expensive to lock the tree, so don't even think about it.
virtual std::ostream \&print (std::ostream \&o) const
Prints a summary of the tree structure on the output file.

Protected Attributes

NodeBox $<D>$ rootBox

The actual container of nodes.
std::vector<int> nodesAtDepth
Node counter.
std::vector<int> nodesAtNegativeDepth
Node counter.

15.2 MWNode

This is an introduction to the mwtree class. We write a small overarching summary of the class where we define the algorithm/equation/structure reasoning for having this class or where it fits with the rest of the code.
template<int D>
class MWNode
Base class for Multiwavelet nodes.
A MWNode will contain the scaling and wavelet coefficients to represent functions or operators within a Multiwavelet framework. The nodes are in multidimensional. The dimensionality is set thoucgh the template parameter $\mathrm{D}=1,2,3$. In addition to the coefficients the node contains metadata such as the scale, the translation index, the norm, pointers to parent node and child nodes, pointer to the corresponding MWTree etc... See member and data descriptions for details.

Subclassed by mrcpp::FunctionNode< D >

Public Functions

MWNode (const $M W N o d e<D>$ \&node, bool allocCoef $=$ true, bool SetCoef = true)
MWNode copy constructor.

Creates loose nodes and optionally copy coefs. The node does not "belong" to the tree: it cannot be accessed by traversing the tree.

Parameters

- node - [in] the original node
- allocCoef - [in] if true MW coefficients are allocated and copied from the original node
virtual ~MWNode()
MWNode destructor.
Recursive deallocation of a node and all its decendants
Coord<D> getCenter () const returns the coordinates of the centre of the node
Coord<D> getUpperBounds () const
returns the upper bounds of the D-interval defining the node
Coord<D> getLowerBounds () const
returns the lower bounds of the D -interval defining the node
bool hasCoord (const Coord<D> \&r) const
Test if a given coordinate is within the boundaries of the node.

Parameters

\mathbf{r} - [in] point coordinates
bool isCompatible (const MWNode<D> \& node)
Testing if nodes are compatible wrt NodeIndex and Tree (order, rootScale, relPrec, etc).
bool isAncestor (const NodeIndex $<D>$ \&idx) const
Test if the node is decending from a given NodeIndex, that is, if they have overlapping support.

Parameters

idx - [in] the NodeIndex of the requested node
double getScalingNorm() const
Calculate and return the squared scaling norm.
virtual double getWaveletNorm() const
Calculate and return the squared wavelet norm.
void getCoefs (Eigen::VectorXd \&c) const
wraps the MW coefficients into an eigen vector object
void printCoefs() const
Printout of node coefficients.
void getPrimitiveQuadPts(Eigen::MatrixXd \&pts) const
Returns the quadrature points in a given node.

The original quadrature points are fetched and then dilated and translated. For each cartesian direction $\alpha=x, y, z \ldots$ the set of quadrature points becomes $x_{i}^{\alpha}=2^{-n}\left(x_{i}+l^{\alpha}\right.$. By taking all possible $(k+1)^{d}$ combinations, they will then define a d-dimensional grid of quadrature points.

Parameters

pts - [inout] quadrature points in a $d \times(k+1)$ matrix form.
void getPrimitiveChildPts(Eigen::MatrixXd \&pts) const
Returns the quadrature points in a given node.

The original quadrature points are fetched and then dilated and translated to match the quadrature points in the children of the given node. For each cartesian direction $\alpha=x, y, z \ldots$ the set of quadrature points becomes $x_{i}^{\alpha}=2^{-n-1}\left(x_{i}+2 l^{\alpha}+t^{\alpha}\right)$, where $t^{\alpha}=0,1$. By taking all possible $(k+1)^{d}$, they will then define a d-dimensional grid of quadrature points for the child nodes.

Parameters

pts - [inout] quadrature points in a $d \times(k+1)$ matrix form.
void getExpandedQuadPts (Eigen::MatrixXd \&pts) const
Returns the quadrature points in a given node.

The primitive quadrature points are used to obtain a tensor-product representation collecting all $(k+1)^{d}$ vectors of quadrature points.

Parameters

pts - [inout] expanded quadrature points in a $d \times(k+1)^{d}$ matrix form.
void getExpandedChildPts(Eigen::MatrixXd \&pts) const
Returns the quadrature points in a given node.

The primitive quadrature points of the children are used to obtain a tensor-product representation collecting all $2^{d}(k+1)^{d}$ vectors of quadrature points.

Parameters

pts - [inout] expanded quadrature points in a $d \times 2^{d}(k+1)^{d}$ matrix form.
void zeroCoefs()
sets all MW coefficients and the norms to zero
void setCoefBlock (int block, int block_size, const double *c)
assigns values to a block of coefficients
a block is typically containing one kind of coefficients (given scaling/wavelet in each direction). Its size is then $(k+1)^{D}$ and the index is between 0 and $2^{D}-1$.

Parameters

- $\mathbf{c}-$ [in] the input coefficients
- block - [in] the block index
- block_size - [in] size of the block
void addCoefBlock (int block, int block_size, const double *c)
adds values to a block of coefficients
a block is typically containing one kind of coefficients (given scaling/wavelet in each direction). Its size is then $(k+1)^{D}$ and the index is between 0 and $2^{D}-1$.

Parameters

- $\mathbf{c}-$ [in] the input coefficients
- block - [in] the block index
- block_size - [in] size of the block
void zeroCoefBlock(int block, int block_size)
sets values of a block of coefficients to zero
a block is typically containing one kind of coefficients (given scaling/wavelet in each direction). Its size is then $(k+1)^{D}$ and the index is between 0 and $2^{D}-1$.

Parameters

- block - [in] the block index
- block_size - [in] size of the block
void attachCoefs (double *coefs)
Attach a set of coefs to this node. Only used locally (the tree is not aware of this).
void calcNorms()
Calculate and store square norm and component norms, if allocated.
void zeroNorms()
Set all norms to zero.
void clearNorms()
Set all norms to Undefined.
virtual void deleteChildren()
Recursive deallocation of children and all their descendants.
Leaves node as LeafNode and children[] as null pointer.
virtual void deleteParent()
Recursive deallocation of parent and all their forefathers.
virtual void cvTransform(int kind)
Coefficient-Value transform.
This routine transforms the scaling coefficients of the node to the function values in the corresponding quadrature roots (of its children).

NOTE: this routine assumes a $0 / 1$ (scaling on child 0 and 1) representation, instead of s / d (scaling and wavelet).

```
Parameters
    operation - [in] forward (coef->value) or backward (value->coef).
```

virtual void mwTransform (int kind)

Multiwavelet transform.

Application of the filters on one node to pass from a $0 / 1$ (scaling on child 0 and 1) representation to an s / d (scaling and wavelet) representation. Bit manipulation is used in order to determine the correct filters and whether to apply them or just pass to the next couple of indexes. The starting coefficients are preserved until the application is terminated, then they are overwritten. With minor modifications this code can also be used for the inverse mw transform (just use the transpose filters) or for the application of an operator (using A, B, C and T parts of an operator instead of G1, G0, H1, H0). This is the version where the three directions are operated one after the other. Although this is formally faster than the other algorithm, the separation of the three dimensions prevent the possibility to use the norm of the operator in order to discard a priori negligible contributions.

Parameters

operation - [in] compression ($\mathrm{s} 0, \mathrm{~s} 1->\mathrm{s}, \mathrm{d}$) or reconstruction ($\mathrm{s}, \mathrm{d}->\mathrm{s} 0, \mathrm{~s} 1$).
double getNodeNorm (const NodeIndex $<D>\& i d x$) const
Gives the norm (absolute value) of the node at the given NodeIndex.

Recursive routine to find the node with a given NodeIndex. When an EndNode is found, do not generate any new node, but rather give the value of the norm assuming the function is uniformly distributed within the node.

Parameters

idx - [in] the NodeIndex of the requested node

Protected Functions

MWNode()

MWNode default constructor.
Should be used only by NodeAllocator to obtain virtual table pointers for the derived classes.
MWNode(MWTree<D>*tree, int IIdx)
MWNode constructor.

Constructor for root nodes. It requires the corresponding MWTree and an integer to fetch the right NodeIndex

Parameters

- tree - [in] the MWTree the root node belongs to
- rIdx - [in] the integer specifying the corresponding root node

MWNode (MWTree<D>*tree, const NodeIndex < D > \&idx)
MWNode constructor.

Constructor for an empty node, given the corresponding MWTree and NodeIndex

Parameters

- tree - [in] the MWTree the root node belongs to
- idx - [in] the NodeIndex defining scale and translation of the node

MWNode (MWNode<D>*parent, int cIdx)
MWNode constructor.

Constructor for leaf nodes. It requires the corresponding parent and an integer to identify the correct child.

Parameters

- parent - [in] parent node
- cIdx - [in] child index of the current node
virtual void dealloc()
Dummy deallocation of MWNode coefficients.
This is just to make sure this method never really gets called (derived classes must implement their own version). This was to avoid having pure virtual methods in the base class.
bool crop (double prec, double splitFac, bool absPrec)
Recurse down until an EndNode is found, and then crop children below the given precision threshold.

Parameters

- prec - [in] precision required
- splitFac - [in] factor used in the split check (larger factor means tighter threshold for finer nodes)
- absPrec - [in] flag to switch from relative (false) to absolute (true) precision.
virtual void allocCoefs (int n_blocks, int block_size)
Allocate the coefs vector.
This is only used by loose nodes, because the loose nodes are not treated by the NodeAllocator class.
virtual void freeCoefs()
Deallocate the coefs vector.
This is only used by loose nodes, because the loose nodes are not treated by the NodeAllocator class.
void setMaxSquareNorm()
recursively set maxSquaredNorm and maxWSquareNorm of parent and descendants
normalization is such that a constant function gives constant value, i.e. not same normalization as a squareNorm
void resetMaxSquareNorm()
recursively reset maxSquaredNorm and maxWSquareNorm of parent and descendants to value -1
virtual double calcComponentNorm (int i) const
Calculate the norm of one component (NOT the squared norm!).
virtual void reCompress()
Update the coefficients of the node by a mw transform of the scaling coefficients of the children.
virtual void giveChildrenCoefs (bool overwrite $=$ true)
forward MW transform from this node to its children
it performs forward MW transform inserting the result directly in the right place for each child node. The children must already be present and its memory allocated for this to work properly.

Parameters

overwrite - [in] if true the coefficients of the children are overwritten. If false the values are summed to the already present ones.
virtual void giveChildCoefs (int cIdx, bool overwrite $=$ true)
forward MW transform to compute scaling coefficients of a single child
it performs forward MW transform in place on a loose node. The scaling coefficients of the selected child are then copied/summed in the correct child node.

Parameters

- cIdx - [in] child index
- overwrite - [in] if true the coefficients of the children are overwritten. If false the values are summed to the already present ones.
virtual void giveParentCoefs (bool overwrite $=$ true)
backward MW transform to compute scaling/wavelet coefficients of a parent
Takes a MWParent and generates coefficients, reverse operation from giveChildrenCoefs

Warning: This routine is only used in connection with Periodic Boundary Conditions
virtual void copyCoefsFromChildren()
Copy scaling coefficients from children to parent.
Takes the scaling coefficients of the children and stores them consecutively in the corresponding block of the parent, following the usual bitwise notation.
int getChildIndex (const NodeIndex $<D>\& n I d x$) const
Routine to find the path along the tree.

Given the translation indices at the final scale, computes the child m to be followed at the current scale in oder to get to the requested node at the final scale. The result is the index of the child needed. The index is obtained by bit manipulation of of the translation indices.

Parameters

nIdx - [in] the sought after node through its NodeIndex
int getChildIndex (const Coord<D>\&r) const
Routine to find the path along the tree.
@ detailsGiven a point in space, determines which child should be followed to get to the corresponding terminal node.

Parameters

$\mathbf{r}-$ [in] the sought after node through the coordinates of a point in space
MWNode<D>*retrieveNode (const Coord<D>\&r, int depth)
Node retriever that ALWAYS returns the requested node.

Recursive routine to find and return the node with a given NodeIndex. This routine always returns the appropriate node, and will generate nodes that does not exist. Recursion starts at this node and ASSUMES the requested node is in fact decending from this node.

Parameters

- $\mathbf{r}-[i n]$ the coordinates of a point in the node
- depth - [in] the depth which one needs to descend

MWNode<D>*retrieveNode (const NodeIndex<D> \&idx)
Node retriever that ALWAYS returns the requested node, possibly without coefs.

Recursive routine to find and return the node with a given NodeIndex. This routine always returns the appropriate node, and will generate nodes that does not exist. Recursion starts at this node and ASSUMES the requested node is in fact descending from this node.

Parameters

idx - [in] the NodeIndex of the requested node
MWNode<D> *retrieveParent (const NodeIndex < D> \&idx)
Node retriever that ALWAYS returns the requested node.
WARNING: This routine is NOT thread safe! Must be used within omp critical.

Recursive routine to find and return the node with a given NodeIndex. This routine always returns the appropriate node, and will generate nodes that does not exist. Recursion starts at this node and ASSUMES the requested node is in fact related to this node.

Parameters

idx - [in] the NodeIndex of the requested node
const $M W$ Node<D> *retrieveNodeNoGen (const NodeIndex $<D>$ \&idx) const
Const version of node retriever that NEVER generates.

Recursive routine to find and return the node with a given NodeIndex. This routine returns the appropriate Node, or a NULL pointer if the node does not exist, or if it is a GenNode. Recursion starts at at this node and ASSUMES the requested node is in fact decending from this node.

Parameters

idx - [in] the requested NodeIndex
MWNode<D>*retrieveNodeNoGen(const NodeIndex < D> \&idx)
Node retriever that NEVER generates.

Recursive routine to find and return the node with a given NodeIndex. This routine returns the appropriate Node, or a NULL pointer if the node does not exist, or if it is a GenNode. Recursion starts at at this node and ASSUMES the requested node is in fact decending from this node.

Parameters

idx - [in] the requested NodeIndex
const $M W N o d e<D>*$ retrieveNodeOrEndNode (const Coord<D> \&r, int depth) const
Node retriever that returns requested Node or EndNode (const version).

Recursive routine to find and return the node given the coordinates of a point in space. This routine returns the appropriate Node, or the EndNode on the path to the requested node, and will never create or return GenNodes. Recursion starts at at this node and ASSUMES the requested node is in fact decending from this node.

Parameters

- $\mathbf{r}-$ [in] the coordinates of a point in the node
- depth - [in] the depth which one needs to descend

MWNode<D> *retrieveNodeOrEndNode (const Coord<D> \&r, int depth)
Node retriever that returns requested Node or EndNode.

Recursive routine to find and return the node given the coordinates of a point in space. This routine returns the appropriate Node, or the EndNode on the path to the requested node, and will never create or return GenNodes. Recursion starts at at this node and ASSUMES the requested node is in fact decending from this node.

Parameters

- $\mathbf{r}-[i n]$ the coordinates of a point in the node
- depth - [in] the depth which one needs to descend
const $M W N o d e<D>*$ retrieveNodeOrEndNode (const NodeIndex < D > \&idx) const
Node retriever that returns requested Node or EndNode (const version).

Recursive routine to find and return the node given the coordinates of a point in space. This routine returns the appropriate Node, or the EndNode on the path to the requested node, and will never create or return GenNodes. Recursion starts at at this node and ASSUMES the requested node is in fact decending from this node.

Parameters

idx - [in] the NodeIndex of the requested node
$M W N o d e<D>*$ retrieveNodeOrEndNode (const NodeIndex < D > \&idx)
Node retriever that returns requested Node or EndNode.

Recursive routine to find and return the node given the coordinates of a point in space. This routine returns the appropriate Node, or the EndNode on the path to the requested node, and will never create or return GenNodes. Recursion starts at at this node and ASSUMES the requested node is in fact decending from this node.

Parameters

idx - [in] the NodeIndex of the requested node
void threadSafeGenChildren()
Generates scaling cofficients of children.
If the node is a leafNode, it takes the scaling\&wavelet coefficients of the parent and it generates the scaling coefficients for the children and stores them consecutively in the corresponding block of the parent, following the usual bitwise notation.
void deleteGenerated()
Deallocation of all generated nodes .
virtual std::ostream \&print (std::ostream \&o) const
printout ofm the node content.

Parameters

o - [in] the output stream

Protected Attributes

MWTree $<D>*$ tree $=\{$ nullptr $\}$
Tree the node belongs to.
$M W N o d e<D>*$ parent $=\{$ nullptr $\}$
Parent node.

MWNode<D> *children[1 << D]
$2^{\wedge} \mathrm{D}$ children
double squareNorm $=\{-1.0\}$
Squared norm of all $2^{\wedge} D(k+1)^{\wedge} D$ coefficients.
double componentNorms[$1 \ll D$]
Squared norms of the separeted 2^{\wedge} D components.
double maxSquareNorm $=\{-1.0\}$
Largest squared norm among itself and descendants.
double maxWSquareNorm $=\{-1.0\}$
Largest wavelet squared norm among itself and descendants. NB: must be set before used.
double *coefs $=\{$ nullptr $\}$
the $2^{\wedge} \mathrm{D}(\mathrm{k}+1)^{\wedge} \mathrm{D}$ MW coefficients For example, in case of a one dimensional function f this array equals $s_{0}, \ldots, s_{k}, d_{0}, \ldots, d_{k}$, where scaling coefficients $s_{j}=s_{j l}^{n}(f)$ and wavelet coefficients $d_{j}=d_{j l}^{n}(f)$. Here n, l are unique for every node.
int serialIx $=\{-1\}$
index in serial Tree
int parentSeriallx $=\{-1\}$
index of parent in serial Tree, or -1 for roots
int childSerialIx $=\{-1\}$
index of first child in serial Tree, or -1 for leafnodes/endnodes

NodeIndex $<D>$ nodeIndex

Scale and translation of the node.
HilbertPath<D> hilbertPath
To be documented.

15.3 OperatorNode

This is an introduction to the OperatorNode class. We write a small overarching summary of the class where we define the algorithm/equation/structure reasoning for having this class or where it fits with the rest of the code.
class OperatorNode : public mrcpp::MWNode<2>

Public Functions

virtual void deleteChildren() override
Recursive deallocation of children and all their descendants.
Leaves node as LeafNode and children[] as null pointer.
virtual double calcComponentNorm(int i) const override
Calculate one specific component norm of the OperatorNode (TODO: needs to be specified more).

OperatorNorms are defined as matrix 2-norms that are expensive to calculate. Thus we calculate some cheaper upper bounds for this norm for thresholding. First a simple vector norm, then a product of the 1and infinity-norm. (TODO: needs to be more presiced).

Parameters

i - [in] TODO: deens to be specified

Eigen::MatrixXd getComponent (int i)

Matrix elements of the non-standard form.
OperatorNode is uniquely associted with a scale n and translation $l=-2^{n}+1, \ldots, 2^{n}=1$. The nonstandard form $T_{n}, B_{n}, C_{n}, A_{n}$ defines matrices $\sigma_{l}^{n}, \beta_{l}^{n}, \gamma_{l}^{n}, \alpha_{l}^{n}$ for a given pair (n, l). One of these matrices is returned by the method according to the choice of the index parameter $i=0,1,2,3$, respectively. For example, $\alpha_{l}^{n}=\operatorname{getComponent}(3)$.

Parameters

i - [in] Index enumerating the matrix type in the non-standard form.

Returns

A submatrix of $(k+1) \times(k+1)$-size from the non-standard form.
Coord<D> getCenter() const
returns the coordinates of the centre of the node
Coord<D> getUpperBounds() const
returns the upper bounds of the D -interval defining the node
Coord<D> getLowerBounds () const
returns the lower bounds of the D -interval defining the node
bool hasCoord (const Coord<D> \&r) const
Test if a given coordinate is within the boundaries of the node.

Parameters

\mathbf{r} - [in] point coordinates
bool isCompatible (const MWNode<D> \&node)
Testing if nodes are compatible wrt NodeIndex and Tree (order, rootScale, relPrec, etc).
bool isAncestor (const NodeIndex < D $>$ \&idx) const
Test if the node is decending from a given NodeIndex, that is, if they have overlapping support.

Parameters

idx - [in] the NodeIndex of the requested node
double getScalingNorm() const
Calculate and return the squared scaling norm.
virtual double getWaveletNorm() const
Calculate and return the squared wavelet norm.
void getCoefs (Eigen::VectorXd \&c) const
wraps the MW coefficients into an eigen vector object
void printCoefs () const
Printout of node coefficients.
void getPrimitiveQuadPts(Eigen::MatrixXd \&pts) const
Returns the quadrature points in a given node.

The original quadrature points are fetched and then dilated and translated. For each cartesian direction $\alpha=x, y, z \ldots$ the set of quadrature points becomes $x_{i}^{\alpha}=2^{-n}\left(x_{i}+l^{\alpha}\right.$. By taking all possible $(k+1)^{d}$ combinations, they will then define a d-dimensional grid of quadrature points.

Parameters

pts - [inout] quadrature points in a $d \times(k+1)$ matrix form.
void getPrimitiveChildPts(Eigen::MatrixXd \&pts) const
Returns the quadrature points in a given node.

The original quadrature points are fetched and then dilated and translated to match the quadrature points in the children of the given node. For each cartesian direction $\alpha=x, y, z \ldots$ the set of quadrature points becomes $x_{i}^{\alpha}=2^{-n-1}\left(x_{i}+2 l^{\alpha}+t^{\alpha}\right)$, where $t^{\alpha}=0,1$. By taking all possible $(k+1)^{d}$, they will then define a d-dimensional grid of quadrature points for the child nodes.

Parameters

pts - [inout] quadrature points in a $d \times(k+1)$ matrix form.
void getExpandedQuadPts (Eigen::MatrixXd \&pts) const
Returns the quadrature points in a given node.

The primitive quadrature points are used to obtain a tensor-product representation collecting all $(k+1)^{d}$ vectors of quadrature points.

Parameters

pts - [inout] expanded quadrature points in a $d \times(k+1)^{d}$ matrix form.
void getExpandedChildPts (Eigen::MatrixXd \&pts) const
Returns the quadrature points in a given node.

The primitive quadrature points of the children are used to obtain a tensor-product representation collecting all $2^{d}(k+1)^{d}$ vectors of quadrature points.

Parameters

pts - [inout] expanded quadrature points in a $d \times 2^{d}(k+1)^{d}$ matrix form.
void zeroCoefs()
sets all MW coefficients and the norms to zero
void setCoefBlock (int block, int block_size, const double *c)
assigns values to a block of coefficients
a block is typically containing one kind of coefficients (given scaling/wavelet in each direction). Its size is then $(k+1)^{D}$ and the index is between 0 and $2^{D}-1$.

Parameters

- \mathbf{c} - [in] the input coefficients
- block - [in] the block index
- block_size - [in] size of the block
void addCoefBlock (int block, int block_size, const double *c)
adds values to a block of coefficients
a block is typically containing one kind of coefficients (given scaling/wavelet in each direction). Its size is then $(k+1)^{D}$ and the index is between 0 and $2^{D}-1$.

Parameters

- \mathbf{c} - [in] the input coefficients
- block - [in] the block index
- block_size - [in] size of the block
void zeroCoefBlock(int block, int block_size)
sets values of a block of coefficients to zero
a block is typically containing one kind of coefficients (given scaling/wavelet in each direction). Its size is then $(k+1)^{D}$ and the index is between 0 and $2^{D}-1$.

Parameters

- block - [in] the block index
- block_size - [in] size of the block
void attachCoefs (double *coefs)
Attach a set of coefs to this node. Only used locally (the tree is not aware of this).
void calcNorms()
Calculate and store square norm and component norms, if allocated.
void zeroNorms()
Set all norms to zero.
void clearNorms()
Set all norms to Undefined.
virtual void deleteParent()
Recursive deallocation of parent and all their forefathers.
virtual void cvTransform (int kind)
Coefficient-Value transform.
This routine transforms the scaling coefficients of the node to the function values in the corresponding quadrature roots (of its children).

NOTE: this routine assumes a $0 / 1$ (scaling on child 0 and 1) representation, instead of s / d (scaling and wavelet).

> Parameters
> \quad operation $-[i n]$ forward (coef- $>$ value) or backward (value->coef).
virtual void mwTransform(int kind)
Multiwavelet transform.
Application of the filters on one node to pass from a $0 / 1$ (scaling on child 0 and 1) representation to an s / d (scaling and wavelet) representation. Bit manipulation is used in order to determine the correct filters and whether to apply them or just pass to the next couple of indexes. The starting coefficients are preserved until the application is terminated, then they are overwritten. With minor modifications this code can also be used for the inverse mw transform (just use the transpose filters) or for the application of an operator (using A, B, C and T parts of an operator instead of G1, G0, H1, H0). This is the version where the three directions are operated one after the other. Although this is formally faster than the other algorithm, the separation of the three dimensions prevent the possibility to use the norm of the operator in order to discard a priori negligible contributions.

-

Parameters

operation - [in] compression ($\mathrm{s} 0, \mathrm{~s} 1->\mathrm{s}, \mathrm{d}$) or reconstruction ($\mathrm{s}, \mathrm{d}->\mathrm{s} 0, \mathrm{~s} 1$).
double getNodeNorm (const NodeIndex < D $>\& i d x$) const
Gives the norm (absolute value) of the node at the given NodeIndex.

Recursive routine to find the node with a given NodeIndex. When an EndNode is found, do not generate any new node, but rather give the value of the norm assuming the function is uniformly distributed within the node.

```
Parameters
idx - [in] the NodeIndex of the requested node
```


Protected Functions

virtual void dealloc() override
Dummy deallocation of MWNode coefficients.
This is just to make sure this method never really gets called (derived classes must implement their own version). This was to avoid having pure virtual methods in the base class.
bool crop (double prec, double splitFac, bool absPrec)
Recurse down until an EndNode is found, and then crop children below the given precision threshold.

Parameters

- prec - [in] precision required
- splitFac - [in] factor used in the split check (larger factor means tighter threshold for finer nodes)
- absPrec - [in] flag to switch from relative (false) to absolute (true) precision.
virtual void allocCoefs (int n_blocks, int block_size)
Allocate the coefs vector.
This is only used by loose nodes, because the loose nodes are not treated by the NodeAllocator class.
virtual void freeCoefs ()
Deallocate the coefs vector.
This is only used by loose nodes, because the loose nodes are not treated by the NodeAllocator class.
void setMaxSquareNorm()
recursively set maxSquaredNorm and maxWSquareNorm of parent and descendants
normalization is such that a constant function gives constant value, i.e. not same normalization as a squareNorm
void resetMaxSquareNorm()
recursively reset maxSquaredNorm and maxWSquareNorm of parent and descendants to value -1 virtual void reCompress ()

Update the coefficients of the node by a mw transform of the scaling coefficients of the children.
virtual void giveChildrenCoefs (bool overwrite $=$ true)
forward MW transform from this node to its children
it performs forward MW transform inserting the result directly in the right place for each child node. The children must already be present and its memory allocated for this to work properly.

Parameters

overwrite - [in] if true the coefficients of the children are overwritten. If false the values are summed to the already present ones.
virtual void giveChildCoefs (int cIdx, bool overwrite $=$ true)
forward MW transform to compute scaling coefficients of a single child
it performs forward MW transform in place on a loose node. The scaling coefficients of the selected child are then copied/summed in the correct child node.

Parameters

- cIdx - [in] child index
- overwrite - [in] if true the coefficients of the children are overwritten. If false the values are summed to the already present ones.
virtual void giveParentCoefs (bool overwrite $=$ true $)$
backward MW transform to compute scaling/wavelet coefficients of a parent
Takes a MWParent and generates coefficients, reverse operation from giveChildrenCoefs

Warning: This routine is only used in connection with Periodic Boundary Conditions
virtual void copyCoefsFromChildren()
Copy scaling coefficients from children to parent.
Takes the scaling coefficients of the children and stores them consecutively in the corresponding block of the parent, following the usual bitwise notation.
int getChildIndex (const NodeIndex $<$ D $>\& n I d x$) const
Routine to find the path along the tree.

Given the translation indices at the final scale, computes the child m to be followed at the current scale in oder to get to the requested node at the final scale. The result is the index of the child needed. The index is obtained by bit manipulation of of the translation indices.

Parameters

nIdx - [in] the sought after node through its NodeIndex
int getChildIndex (const Coord<D>\&r) const
Routine to find the path along the tree.
@ detailsGiven a point in space, determines which child should be followed to get to the corresponding terminal node.

Parameters

$\mathbf{r}-$ [in] the sought after node through the coordinates of a point in space
MWNode<D> *retrieveNode(const Coord<D> \&r, int depth)
Node retriever that ALWAYS returns the requested node.

Recursive routine to find and return the node with a given NodeIndex. This routine always returns the appropriate node, and will generate nodes that does not exist. Recursion starts at this node and ASSUMES the requested node is in fact decending from this node.

Parameters

- $\mathbf{r}-$ [in] the coordinates of a point in the node
- depth - [in] the depth which one needs to descend

MWNode<D> *retrieveNode (const NodeIndex<D> \&idx)
Node retriever that ALWAYS returns the requested node, possibly without coefs.

Recursive routine to find and return the node with a given NodeIndex. This routine always returns the appropriate node, and will generate nodes that does not exist. Recursion starts at this node and ASSUMES the requested node is in fact descending from this node.

Parameters

idx - [in] the NodeIndex of the requested node
MWNode<D> *retrieveParent (const NodeIndex<D> \&idx)
Node retriever that ALWAYS returns the requested node.
WARNING: This routine is NOT thread safe! Must be used within omp critical.

Recursive routine to find and return the node with a given NodeIndex. This routine always returns the appropriate node, and will generate nodes that does not exist. Recursion starts at this node and ASSUMES the requested node is in fact related to this node.

Parameters

idx - [in] the NodeIndex of the requested node
const $M W$ Node<D> *retrieveNodeNoGen (const NodeIndex<D> \&idx) const
Const version of node retriever that NEVER generates.

Recursive routine to find and return the node with a given NodeIndex. This routine returns the appropriate Node, or a NULL pointer if the node does not exist, or if it is a GenNode. Recursion starts at at this node and ASSUMES the requested node is in fact decending from this node.

Parameters

idx - [in] the requested NodeIndex
MWNode<D> *retrieveNodeNoGen(const NodeIndex<D> \&idx)
Node retriever that NEVER generates.

Recursive routine to find and return the node with a given NodeIndex. This routine returns the appropriate Node, or a NULL pointer if the node does not exist, or if it is a GenNode. Recursion starts at at this node and ASSUMES the requested node is in fact decending from this node.

Parameters

idx - [in] the requested NodeIndex
const MWNode<D> *retrieveNodeOrEndNode (const Coord<D> \&r, int depth) const
Node retriever that returns requested Node or EndNode (const version).

Recursive routine to find and return the node given the coordinates of a point in space. This routine returns the appropriate Node, or the EndNode on the path to the requested node, and will never create or return GenNodes. Recursion starts at at this node and ASSUMES the requested node is in fact decending from this node.

Parameters

- \mathbf{r} - [in] the coordinates of a point in the node
- depth - [in] the depth which one needs to descend

MWNode<D> *retrieveNodeOrEndNode (const Coord<D> \&r, int depth)
Node retriever that returns requested Node or EndNode.

Recursive routine to find and return the node given the coordinates of a point in space. This routine returns the appropriate Node, or the EndNode on the path to the requested node, and will never create or return GenNodes. Recursion starts at at this node and ASSUMES the requested node is in fact decending from this node.

Parameters

- $\mathbf{r}-[i n]$ the coordinates of a point in the node
- depth - [in] the depth which one needs to descend
const $M W N o d e<\mathrm{D}>*$ retrieveNodeOrEndNode (const NodeIndex<D> \&idx) const
Node retriever that returns requested Node or EndNode (const version).

Recursive routine to find and return the node given the coordinates of a point in space. This routine returns the appropriate Node, or the EndNode on the path to the requested node, and will never create or return GenNodes. Recursion starts at at this node and ASSUMES the requested node is in fact decending from this node.

Parameters

idx - [in] the NodeIndex of the requested node
MWNode<D> *retrieveNodeOrEndNode (const NodeIndex<D> \&idx)
Node retriever that returns requested Node or EndNode.

Recursive routine to find and return the node given the coordinates of a point in space. This routine returns the appropriate Node, or the EndNode on the path to the requested node, and will never create or return GenNodes. Recursion starts at at this node and ASSUMES the requested node is in fact decending from this node.

Parameters

idx - [in] the NodeIndex of the requested node
void threadSafeGenChildren()
Generates scaling cofficients of children.
If the node is a leafNode, it takes the scaling\&wavelet coefficients of the parent and it generates the scaling coefficients for the children and stores them consecutively in the corresponding block of the parent, following the usual bitwise notation.
void deleteGenerated()
Deallocation of all generated nodes .
virtual std::ostream \&print (std::ostream \&o) const
printout ofm the node content.

Parameters

o - [in] the output stream

Protected Attributes

MWTree<D> *tree

Tree the node belongs to.

MWNode<D>*parent

Parent node.

```
MWNode<D> *children[1<< D]
\(2^{\wedge} \mathrm{D}\) children
```

double squareNorm
Squared norm of all $2^{\wedge} D(k+1)^{\wedge} D$ coefficients.
double componentNorms[1 << D]
Squared norms of the separeted $2^{\wedge} \mathrm{D}$ components.
double maxSquareNorm
Largest squared norm among itself and descendants.
double maxWSquareNorm
Largest wavelet squared norm among itself and descendants. NB: must be set before used.
double *coefs
the $2^{\wedge} \mathrm{D}(\mathrm{k}+1)^{\wedge} \mathrm{D}$ MW coefficients For example, in case of a one dimensional function f this array equals $s_{0}, \ldots, s_{k}, d_{0}, \ldots, d_{k}$, where scaling coefficients $s_{j}=s_{j l}^{n}(f)$ and wavelet coefficients $d_{j}=d_{j l}^{n}(f)$. Here n, l are unique for every node.
int seriallx
index in serial Tree
int parentSeriallx
index of parent in serial Tree, or -1 for roots
int childSeriallx
index of first child in serial Tree, or -1 for leafnodes/endnodes

NodeIndex $<$ D $>$ nodeIndex

Scale and translation of the node.

HilbertPath<D> hilbertPath
To be documented.

15.4 OperatorTree

This is an introduction to the OperatorTree class. We write a small overarching summary of the class where we define the algorithm/equation/structure reasoning for having this class or where it fits with the rest of the code.
class OperatorTree : public mrcpp::MWTree<2>

Public Functions

void setupOperNodeCache()

Make 1D lists, adressable from [-1, 1] scale by scale, of operator node pointers for fast operator retrieval. This method is not thread safe, since it projects missing operator nodes on the fly. Hence, it must NEVER be called within a parallel region, or all hell will break loose. This is not really a problem, but you have been warned.
inline OperatorNode \& getNode (int n, int l)
TODO: It has to be specified more. 1 is distance to the diagonal.
virtual void mwTransformDown(bool overwrite) override
Regenerate all scaling coeffs by MW transformation of existing s/w-coeffs on coarser scales, starting at the rootNodes. Option to overwrite or add up existing scaling coefficients (can be used after operator application). Reimplementation of MWTree::mwTransform() without OMP, as calculation of OperatorNorm is done using random vectors, which is non-deterministic in parallel. FunctionTrees should be fine.
virtual void mwTransformUp() override
Regenerate all s/d-coeffs by backtransformation, starting at the bottom and thus purifying all coefficients. Option to overwrite or add up existing coefficients of BranchNodes (can be used after operator application). Reimplementation of MWTree::mwTransform() without OMP, as calculation of OperatorNorm is done using random vectors, which is non-deterministic in parallel. FunctionTrees should be fine.
void setZero()
Set the MW coefficients to zero, keeping the same tree structure.
Keeps the node structure of the tree, even though the zero function is representable at depth zero. One should then use cropTree to remove unnecessary nodes.
void clear ()
Remove all nodes in the tree.
Leaves the tree in the same state as after construction, i.e. undefined tree structure containing only root nodes without coefficients. The assigned memory, including branch and leaf nodes, (nodeChunks in NodeAllocator) is NOT released, but is immediately available to the new function.
inline double getSquareNorm() const

Returns

Squared L2 norm of the function

void calcSquareNorm()

Calculate the squared norm $\|f\|^{2}$... of a function represented as a tree.
The norm is calculated using endNodes only. The specific type of norm which is computed will depend on the derived class
inline int getNNodes() const

Returns

the total number of nodes in the tree
int getNNodesAtDepth (int i) const

Parameters

depth - [in] Tree depth (0 depth is the coarsest scale) to count.

Returns

Total number of nodes in the tree, at given depth (not in use)
int getSizeNodes() const

Returns

Size of all MW coefs in the tree, in kB
inline NodeBox < D > \& getRootBox ()

Returns

void mwTransform (int type, bool overwrite = true)
Full Multiwavelet transform of the tree in either directions.

It performs a Multiwavlet transform of the whole tree. The input parameters will specify the direction (upwards or downwards) and whether the result is added to the coefficients or it overwrites them. See the documentation for the mwTransformUp and mwTransformDown for details.

$$
\begin{array}{r}
\left(s_{n l}\right. \\
d_{n l} \rightleftarrows\left(s_{n+1,2 l}\right. \\
s_{n+1,2 l+1}
\end{array}
$$

Parameters

- type - [in] TopDown (from roots to leaves) or BottomUp (from leaves to roots) which specifies the direction of the MW transform
- overwrite - [in] if true, the result will overwrite preexisting coefficients.

MWNode<D>*findNode(NodeIndex<D> nIdx)

Finds and returns the node pointer with the given NodeIndex.
Recursive routine to find and return the node with a given NodeIndex. This routine returns the appropriate Node, or a NULL pointer if the node does not exist, or if it is a GenNode. Recursion starts at the appropriate rootNode.
const MWNode<D>*findNode(NodeIndex<D> nIdx) const
Finds and returns the node pointer with the given NodeIndex, const version.
Recursive routine to find and return the node with a given NodeIndex. This routine returns the appropriate Node, or a NULL pointer if the node does not exist, or if it is a GenNode. Recursion starts at the appropriate rootNode.

MWNode<D> \& getNode(NodeIndex<D> nIdx)

Finds and returns the node reference with the given NodeIndex.
This routine ALWAYS returns the node you ask for. If the node does not exist, it will be generated by MW transform. Recursion starts at the appropriate rootNode and descends from this.

MWNode<D> \& getNode (Coord<D> r, int depth =-1)
Finds and returns the node at a given depth that contains a given coordinate.

This routine ALWAYS returns the node you ask for, and will generate nodes that do not exist. Recursion starts at the appropriate rootNode and decends from this.

Parameters

- depth - [in] requested node depth from root scale.
- \mathbf{r} - [in] coordinates of an arbitrary point in space

MWNode<D> \& getNodeOrEndNode(NodeIndex<D> nIdx)

Finds and returns the node with the given NodeIndex.
This routine returns the Node you ask for, or the EndNode on the path to the requested node, if the requested one is deeper than the leaf node ancestor. It will never create or return GenNodes. Recursion starts at the appropriate rootNode and decends from this.
const $M W N o d e<\mathrm{D}>\&$ getNodeOrEndNode (NodeIndex < D $>\mathrm{nIdx}$) const
Finds and returns the node reference with the given NodeIndex. Const version.
This routine ALWAYS returns the node you ask for. If the node does not exist, it will be generated by MW transform. Recursion starts at the appropriate rootNode and decends from this.
MWNode<D> \& getNodeOrEndNode (Coord<D>r, int depth =-1)
Finds and returns the node at a given depth that contains a given coordinate.

This routine returns the Node you ask for, or the EndNode on the path to the requested node, and will never create or return GenNodes. Recursion starts at the appropriate rootNode and decends from this.

Parameters

- depth - [in] requested node depth from root scale.
- \mathbf{r} - [in] coordinates of an arbitrary point in space
const $M W$ Node<D> \& getNodeOrEndNode (Coord<D> r, int depth $=-1$) const
Finds and returns the node at a given depth that contains a given coordinate. Const version.

This routine returns the Node you ask for, or the EndNode on the path to the requested node, and will never create or return GenNodes. Recursion starts at the appropriate rootNode and decends from this.

Parameters

- depth - [in] requested node depth from root scale.
- \mathbf{r} - [in] coordinates of an arbitrary point in space

MWNodeVector<D>*copyEndNodeTable()
Returns the list of all EndNodes.
copies the list of all EndNode pointers into a new vector and retunrs it.
void deleteRootNodes()
Deletes all the nodes in the tree.
This method will recursively delete all the nodes, including the root nodes. Derived classes will call this method when the object is deleted.
void resetEndNodeTable()
Recreate the endNodeTable.
the endNodeTable is first deleted and then rebuilt from scratch. It makes use of the TreeIterator to traverse the tree.
int getIx (NodeIndex<D> nIdx)
gives seriallx of a node from its NodeIndex
Peter will document this!

void makeMaxSquareNorms()

sets values for maxSquareNorm in all nodes
it defines the upper bound of the squared norm $\|f\|_{\ldots}^{2}$ in this node or its descendents

Public Members

MWNodeVector<D> endNodeTable
Final projected nodes.

Protected Functions

virtual std::ostream \&print (std::ostream \&o) const override
Prints a summary of the tree structure on the output file.
void incrementNodeCount (int scale)
Increments node counter by one for non-GenNodes.
TO BE DOCUMENTED

Warning: : This routine is not thread safe, and must NEVER be called outside a critical region in parallel. It's way. way too expensive to lock the tree, so don't even think about it.
void decrementNodeCount (int scale)
Decrements node counter by one for non-GenNodes.
TO BE DOCUMENTED

Warning: : This routine is not thread safe, and must NEVER be called outside a critical region in parallel. It's way. way too expensive to lock the tree, so don't even think about it.

Protected Attributes

OperatorNode $* * *$ nodePtrStore

Avoids tree lookups.

OperatorNode ${ }^{* * *}$ nodePtrAccess

Center ($1=0$) of node list.

NodeBox<D> rootBox
The actual container of nodes.
std::vector<int> nodesAtDepth
Node counter.
std::vector<int> nodesAtNegativeDepth
Node counter.

15.5 BoundingBox

This is an introduction to the BoundingBox class. We write a small overarching summary of the class where we define the algorithm/equation/structure reasoning for having this class or where it fits with the rest of the code.
template<int D>
class BoundingBox
Class defining the computational domain.
The computational domain is made up of a collection of D-dimensional boxes on a particular length scale n. The size of each box is then $\left[2^{-n}\right]^{D}$, i.e. higher scale means smaller boxes, and the scale may be negative. The number of boxes can be different in each dimension $\left[n_{x}, n_{y}, \ldots\right]$, but they must all be on the same scale (size). Box translations relative to the world origin must be an integer multiple of the given scale size 2^{-n}.
Subclassed by mrcpp::NodeBox< D >

Public Functions

explicit BoundingBox (std::array<int, 2> box)
Constructor for BoundingBox object.

Creates a box with appropriate root scale and scaling factor to fit the given bounds, which applies to all dimensions. Root scale is chosen such that the scaling factor becomes $1<\operatorname{sfac}<2$.

Limitations: Box must be either [0,L] or [-L,L], with L a positive integer. This is the most general constructor, which will create a world with no periodic boundary conditions.

Parameters

box - [in] [lower, upper] bound in all dimensions.

Returns

New BoundingBox object.
explicit BoundingBox (int $\mathrm{n}=0$, const std::array<int, $D>\& \mathrm{l}=\{ \}$, const std::array<int, $D>\& \mathrm{nb}=\{ \}$, const
std::array<double, $D>\& \mathrm{sf}=\{ \}$, bool pbc = false)
Constructor for BoundingBox object.

Creates a box with given parameters. The parameter n defines the length scale, which, together with sf , determines the unit length of each side of the boxes by $\left[2^{-n}\right]^{D}$. The parameter 1 defines the corner translation of the lower corner of the box relative to the world origin. The parameter nb defines the number of boxes in each dimension. The parameter sf defines the scaling factor, which determines the box translations around the origin, i.e. the amount of boxes around origin. The parameter pbc defines whether the world is periodic or not. In this constructor this value makes all dimensions periodic. This constructor is used for work in periodic systems.

Parameters

- $\mathbf{n}-$ [in] Length scale, default 0 .
- 1 - [in] Corner translation, default $[0,0, \ldots]$.
- nb - [in] Number of boxes, default $[1,1, \ldots]$.
- $\mathbf{s f}$ - [in] Scaling factor, default $[1.0,1.0, \ldots]$.
- pbc - [in] Periodic boundary conditions, default false.

Returns

New BoundingBox object.
explicit BoundingBox (const NodeIndex $\langle D>$ \&idx, const std::array<int, $D>\& n b=\{ \}$, const std::array<double, $D>\& s f=\{ \})$
Constructor for BoundingBox object.

Creates a box with given parameters. The parameter idx defines the index of the lower corner of the box relative to the world origin. The parameter nb defines the number of boxes in each dimension. The parameter sf defines the scaling factor, which determines the box translations around the origin, i.e. the amount of boxes around origin. This constructor creates a world with no periodic boundary conditions.

Parameters

- idx - [in] index of the lower corner of the box.
- nb - [in] Number of boxes, default $[1,1, \ldots]$.
- $\mathbf{s f}$ - [in] Scaling factor, default $[1.0,1.0, \ldots]$.

Returns

New BoundingBox object.
explicit BoundingBox (const std::array<double, $D>\& \mathrm{sf}$, bool pbc = true)
Constructor for BoundingBox object.

Creates a box with given parameters. The parameter sf defines the scaling factor, which determines the box translations around the origin, i.e. the amount of boxes around origin. The parameter pbc defines whether the world is periodic or not. In this constructor this value makes all dimensions periodic. This construtor is used for work in periodic systems.

Parameters

- $\mathbf{s f}$ - [in] Scaling factor, default $[1.0,1.0, \ldots]$.
- pbc - [in] Periodic boundary conditions, default true.

BoundingBox (const std::array<double, $D>\& s f$, std::array<bool, $D>\mathrm{pbc}$)
Constructor for BoundingBox object.

Creates a box with given parameters. The parameter sf defines the scaling factor, which determines the box translations around the origin, i.e. the amount of boxes around origin. The parameter pbc defines whether the world is periodic or not. In this constructor this value makes specific dimensions periodic. This is used for work in periodic systems.

Parameters

- $\mathbf{s f}$ - [in] Scaling factor, default $[1.0,1.0, \ldots]$.
- pbc - [in] Periodic boundary conditions, default true.

Returns

New BoundingBox object.
BoundingBox (const BoundingBox $<D>\& b o x$)
Constructor for BoundingBox object.

Creates a box identical to the input box paramter. This constructor uses all parameters from the other BoundingBox to create a new one.

Parameters

box - [in] Other BoundingBox object.

Returns

New BoundingBox object.
BoundingBox<D>\&operator=(const BoundingBox $<$ D $>$ \&box)
Assignment operator overload for BoundingBox object.

Allocates all parameters in this BoundingBox to be that of the other BoundingBox.

Parameters

box - [in] Other BoundingBox object.

Returns

New BoundingBox object.
NodeIndex $<D>$ getNodeIndex (int bIdx) const
Fetches a NodeIndex object from a given box index.

During the adaptive refinement, each original box will contain an increasing number of smaller cells, each of which will be part of a specific node in the tree. These cells are divided adaptivelly. This function returns the NodeIndex object of the cell at the lower back corner of the box object indexed by bIdx. Specialized for $D=1$ below

Parameters

bIdx - [in] Box index, the index of the box we want to fetch the cell index from.

Returns

The NodeIndex object of the index given as it is in the Multiresolutoin analysis.
int getBoxIndex (Coord<D>r) const
Fetches the index of a box from a given coordinate.

Specialized for $\mathrm{D}=1$ below

Parameters

$\mathbf{r}-$ [in] D-dimensional array representaing a coordinate in the simulation box

Returns

The index value of the boxes in the position given as it is in the generated world.

int getBoxIndex (NodeIndex<D> nIdx) const

Fetches the index of a box from a given NodeIndex.

During the multiresolution analysis the boxes will be divided into smaller boxes, which means that each individual box will be part of a specific node in the tree. Each node will get its own index value, but will still be part of one of the original boxes of the world. Specialized for $D=1$ below

Parameters

nIdx - [in] NodeIndex object, representing the node and its index in the adaptive tree.

Returns

The index value of the boxes in which the NodeIndex object is mapping to.
NodeIndex<1> getNodeIndex (int bIdx) const
Fetches a NodeIndex object from a given box index, specialiced for 1-D.

During the adaptive refinement, each original box will contain an increasing number of smaller cells, each of which will be part of a specific node in the tree. These cells are divided adaptivelly. This function returns the NodeIndex object of the cell at the lower back corner of the box object indexed by bIdx.

Parameters

bIdx - [in] Box index, the index of the box we want to fetch the cell index from.

Returns

The NodeIndex object of the index given as it is in the Multiresolutoin analysis.
int getBoxIndex (Coord<1> r) const
Fetches the index of a box from a given coordinate, specialized for 1D.

Parameters

\mathbf{r} - [in] 1-dimensional array representaing a coordinate in the simulation box

Returns

The index value of the boxes in the position given as it is in the generated world.
int getBoxIndex (NodeIndex < $1>$ nIdx) const
Fetches the index of a box from a given NodeIndex specialized for 1-D.

During the multiresolution analysis the boxes will be divided into smaller boxes, which means that each individual box will be part of a specific node in the tree. Each node will get its own index value, but will still be part of one of the original boxes of the world.

Parameters

nIdx - [in] NodeIndex object, representing the node and its index in the adaptive tree.

Returns

The index value of the boxes in which the NodeIndex object is mapping to.

Protected Functions

void setNBoxes (const std::array<int, $D>\& \mathrm{nb}=\{ \}$)
Sets the number of boxes in each dimension.

For each dimentions D it sets the number of boxes in that dimension in the nBoxes array and the total amount of boxes in the world in the totBoxes variable. This just sets counters for the number of boxes in each dimension.

Parameters

$$
\text { nb - [in] Number of boxes, default }[1,1, \ldots] \text {. }
$$

void setDerivedParameters()
Computes and sets all derived parameters.
For all parameters that have been initialized in the constructor, this function will compute the necessary derived parameters in each dimension. The unit length is set to sfac $\cdot 2^{-n}$ where sfac is the scaling factor
(default 1.0) and n is the length scale. The unit length is the base unit which is used for the size and positioning of the boxes around origin. The boxLength is the total length of the box in each dimension, which is the unit length times the number of boxes in that dimension. The lowerBound is computed from the index of the lower corner of the box and the unit length. The upperBound is computed to be the lower corner plus the total length in that dimension.
void setScalingFactors (const std::array<double, $D>\& \mathrm{sf}$)
Sets the number of boxes in each dimension.

This checks that the sf variable has sane values before assigning it to the member variable scalingFactor.

Parameters

$\mathbf{s f} \mathbf{-}$ [in] Scaling factor, default $[1.0,1.0, \ldots]$.
void setPeriodic (std::array<bool, $D>$ periodic)
Sets which dimensions are periodic.

This fills in the periodic array with the values from the input array.

Parameters

pbs - [in] D-dimensional array holding boolean values for each dimension.
void setPeriodic (bool periodic)
Sets which dimensions are periodic.
this fills in the periodic array with the values from the input.

Parameters

pbc - [in] Boolean which is used to set all dimension to either periodic or not
std::ostream \&print (std::ostream \&o) const
Prints information about the BoundinBox object.

A function which prints information about the BoundingBox object.

Parameters

\mathbf{o} - [in] Output stream variable which will be used to print the information

Returns

The output stream variable.

Protected Attributes

NodeIndex $<D>$ cornerIndex

Index defining the lower corner of the box.
std:: array<int, $D>$ nBoxes $=\{ \}$
Number of boxes in each dim, last entry total.

```
std::array<bool, D> periodic = { }
```

Sets which dimension has Periodic boundary conditions.

Coord<D> unitLengths

$1 / 2^{\wedge}$ initialScale

Coord<D> boxLengths

Total length (unitLength times nBoxes)

Coord<D> lowerBounds

Box lower bound (not real)

Coord<D> upperBounds

Box upper bound (not real)

15.6 MultiResolutionAnalysis

The MultiResolutionAnalysis (MRA) class contains the methods to project objects onto the spatial grid. That is, to combine different functions and operators in mathematical operations, they need to be compatible; they must be defined on the same computational domain and constructed using the same polynomial basis (order and type). This information constitutes an MRA, which needs to be defined and passed as argument to all function and operator constructors, and only functions and operators with compatible MRAs can be combined in subsequent calculations.

template<int D>

class MultiResolutionAnalysis

Class collecting computational domain and MW basis.
In order to combine different functions and operators in mathematical operations, they need to be compatible. That is, they must be defined on the same computational domain and constructed using the same polynomial basis (order and type). This information constitutes an MRA, which needs to be defined and passed as argument to all function and operator constructors, and only functions and operators with compatible MRAs can be combined in subsequent calculations.

Public Functions

MultiResolutionAnalysis(std::array<int, 2>bb, int order, int depth $=$ MaxDepth)
Constructs a MultiResolutionAnalysis object composed of computational domain (world) and a polynomial basis (Multiwavelets)

Constructor of the MultiResolutionAnalysis class from scratch, without requiring any pre-existing complex structure. The constructor calls the InterpolatingBasis basis constructor to generate the MultiWavelets basis of functions, then the BoundingBox constructor to create the computational domain. The constructor then checks if the generated node depth, or node refinement is beyond the root scale or the maximum depth allowed, in which case it will abort the process. Otherwise, the process goes on to setup the filters with the class' setupFilter method.

Parameters

- bb - [in] 2-element integer array [Lower, Upper] defining the bounds for a BoundingBox object representing the computational domain
- order - [in] Maximum polynomial order of the multiwavelet basis, immediately used in the constructor of an InterPolatingBasis object which becomes an attribute of the MRA
- maxDepth - [in] Exponent of the node refinement in base 2, relative to root scale. In other words, it is the maximum amount of refinement that we allow in a node, in other to avoid overflow of values.

Returns

New MultiResolutionAnalysis (MRA) object
MultiResolutionAnalysis (const BoundingBox $<D>\& \mathrm{bb}$, int order, int depth $=$ MaxDepth)
Constructs a MultiResolutionAnalysis object composed of computational domain (world) and a polynomial basis (Multiwavelets) from a pre-existing BoundingBox object.

Constructor of the MultiResolutionAnalysis class from a BoundingBox object. For more details see the first constructor.

Parameters

- $\mathbf{b b}$ - [in] BoundingBox object representing the computational domain
- order - [in] (integer) Maximum polynomial order of the multiwavelet basis, immediately used in the constructor of an InterPolatingBasis object which becomes an attribute of the MRA
- maxDepth - [in] (integer) Exponent of the node refinement in base 2, relative to root scale. In other words, it is the maximum amount of refinement that we allow in a node, in other to avoid overflow of values.

Returns

New MultiResolutionAnalysis (MRA) object
MultiResolutionAnalysis (const BoundingBox $<D>\& \mathrm{bb}$, const ScalingBasis \&sb, int depth $=$ MaxDepth)
Constructor for a MultiResolutionAnalysis object from a pre-existing BoundingBox (computational domain) and a ScalingBasis (Multiwavelet basis) objects.

Creates a MRA object from pre-existing BoundingBox and ScalingBasis objects. These objects are taken as reference. For more details about the constructor itself, see the first constructor.

Parameters

- $\mathbf{b b}$ - [in] Computational domain as a BoundingBox object, taken by constant reference
- sb - [in] Polynomial basis (MW) as a ScalingBasis object
- depth - [in] Maximum allowed resolution depth, relative to root scale

Returns

New MultiResolutionAnalysis object

MultiResolutionAnalysis(const MultiResolutionAnalysis<D> \&mra)

Copy constructor for a MultiResolutionAnalysis object composed of computational domain (world) and a polynomial basis (Multiwavelets)

Copy a MultiResolutionAnalysis object without modifying the original. For more details see the first constructor.

Parameters

mra - [in] Pre-existing MRA object

Returns

New MultiResolutionAnalysis (MRA) object
double calcMaxDistance() const
Computes the difference between the lower and upper bounds of the computational domain.

Returns

Maximum possible distance between two points in the MRA domain
bool operator $==$ (const MultiResolutionAnalysis $\langle D>\& m r a$) const
Equality operator for the MultiResolutionAnalysis class, returns true if both MRAs have the same polynomial basis, computational domain and maximum depth, and false otherwise.

Equality operator for the MultiResolutionAnalysis class, returns true if both MRAs have the same polynomial basis represented by a BoundingBox object, computational domain (ScalingBasis object) and maximum depth (integer), and false otherwise. Computations on different MRA cannot be combined, this operator can be used to make sure that the multiple MRAs are compatible. For more information about the meaning of equality for BoundingBox and ScalingBasis objets, see their respective classes.

Parameters

mra - [in] MRA object, taken by constant reference

Returns

Whether the two MRA objects are equal.
bool operator! $=($ const MultiResolutionAnalysis $<D>\& m r a)$ const
Inequality operator for the MultiResolutionAnalysis class, returns false if both MRAs have the same polynomial basis, computational domain and maximum depth, and true otherwise.

Inequality operator for the MultiResolutionAnalysis class, returns true if both MRAs have the same polynomial basis represented by a BoundingBox object, computational domain (ScalingBasis object) and maximum depth (integer), and false otherwise. Opposite of the $==$ operator. For more information about the meaning of equality for BoundingBox and ScalingBasis objets, see their respective classes.

Parameters

mra - [in] MRA object, taken by constant reference

Returns

Whether the two MRA objects are not equal.
void print() const
Displays the MRA's attributes in the outstream defined in the Printer class.
This function displays the attributes of the MRA in the using the Printer class. By default, the Printer class writes all information in the output file, not the terminal.

Protected Functions

void setupFilter ()
Initializes the MW filters for the given MW basis.
By calling the get() function for the appropriate MW basis, the global FilterCache Singleton object is initialized. Any subsequent reference to this particular filter will point to the same unique global object.

15.7 CrossCorrelationCache

This is an introduction to the CrossCorrelationCache class. We write a small overarching summary of the class where we define the algorithm/equation/structure reasoning for having this class or where it fits with the rest of the code.
template<int T>
class CrossCorrelationCache : public mrcpp::ObjectCache<CrossCorrelation>

Public Functions

const Eigen::MatrixXd \& getRMatrix (int order)
Fetches the cross correlation coefficients.

The cross correlation coefficients

$$
C_{i j p}^{(+)}=\int_{0}^{1} d z \int_{0}^{1} d x \phi_{i}(x) \phi_{j}(x-z) \phi_{p}(z)
$$

with $i, j=0, \ldots, k$ and $p=0, \ldots, 2 k+1$. They are grouped in the so called right matrix

$$
\left(\begin{array}{cccc}
C_{000}^{(+)} & C_{001}^{(+)} & \ldots & C_{00,2 k+1}^{(+)} \\
C_{010}^{(+)} & C_{011}^{(+)} & \ldots & C_{01,2 k+1}^{(+)} \\
\ldots & \ldots & \ldots & \ldots \\
C_{k, k-1,0}^{(+)} & C_{k, k-1,1}^{(+)} & \ldots & C_{k, k-1,2 k+1}^{(+)} \\
C_{k k 0}^{(+)} & C_{k k 1}^{(+)} & \ldots & C_{k k, 2 k+1}^{(+)}
\end{array}\right)
$$

that is returned by the method.

Parameters

order - [in] Dimension of $V_{0} \subset L^{2}(\mathbb{R})$ minus one, that is the maximum degree k of polynomials in $V_{0} \subset L^{2}(0,1)$.

Returns

The right matrix of cross correlation coefficients.

Protected Attributes

std::string libPath

Base path to filter library.

Private Members

int memLoaded

memory occupied by loaded objects
std::vector<CrossCorrelation*> objs
objects store
std::vector<int> mem
mem per object

15.8 LegendreBasis

This is an introduction to the LegendreBasis class. We write a small overarching summary of the class where we define the algorithm/equation/structure reasoning for having this class or where it fits with the rest of the code.
class LegendreBasis : public mrcpp::ScalingBasis
Legendre scaling functions as defined by Alpert, SIAM J Math Anal 24 (1), 246 (1993).

Public Functions

inline LegendreBasis (int k)

```
Parameters
    k - [in] Polynomial order of basis, 1< k < 40
```

Returns
New LegendreBasis object

Private Functions

void initScalingBasis()
Initialise Legendre scaling basis.
Fills std::vector<Polynomial> funcs declared in the base class ScalingBasis with the Legendre scaling functions

$$
\phi_{j}(x)=\sqrt{2 j+1} P_{j}(2 x-1), \quad x \in(0,1), \quad j=0, \ldots, k,
$$

where P_{j} are standard Legendre polynomials. Here k is order declared in the base class.

Note: These Legendre scaling functions are defined on the unit interval $(0,1)$.
void calcQuadratureValues()
In Progress by Evgueni...
void calcCVMaps()
In Progress by Evgueni...

15.9 InterpolatingBasis

This is an introduction to the InterpolatingBasis class. We write a small overarching summary of the class where we define the algorithm/equation/structure reasoning for having this class or where it fits with the rest of the code.
class InterpolatingBasis: public mrcpp::ScalingBasis
Interpolating scaling functions as defined by Alpert etal, J Comp Phys 182, 149-190 (2002).

Public Functions

inline InterpolatingBasis(int k)

Parameters

\mathbf{k} - [in] Polynomial order of basis, $1<\mathbf{k}<40$

Returns

New InterpolatingBasis object

Private Functions

void initScalingBasis()
Initialise interpolating scaling basis.
Fills std::vector<Polynomial> funcs declared in the base class ScalingBasis with the interpolating scaling functions

$$
\varphi_{j}(x)=\sqrt{w_{j}} \sum_{m=0}^{k} \phi_{m}\left(x_{j}\right) \phi_{m}(x), \quad x \in(0,1), \quad j=0, \ldots, k,
$$

where ϕ_{m} are the Legendre scaling functions. Here k is order declared in the base class.

Note: These interpolating scaling functions are defined on the unit interval $(0,1)$.
void calcQuadratureValues()
In Progress by Evgueni...
void calcCVMaps()
In Progress by Evgueni...

15.10 TimeEvolutionOperator

This is an introduction to the TimeEvolutionOperator class. We write a small overarching summary of the class where we define the algorithm/equation/structure reasoning for having this class or where it fits with the rest of the code.
template<int D>
class TimeEvolutionOperator : public mrcpp::ConvolutionOperator<D>
time evolition operator

Public Functions

TimeEvolutionOperator (const MultiResolutionAnalysis<D>\&mra, double prec, double time, int finest_scale, bool imaginary, int max_Jpower = 20)
A constructor for TimeEvolutionOperator class.

Constructs either real or imaginary part of the Schrodinger semigroup at a given time moment.

Parameters

- mra - [in] MRA.
- prec - [in] precision.
- time - [in] the time moment (step).
- finest_scale - [in] the operator constructed down to this scale.
- imaginary - [in] defines the real (faulse) or imaginary (true) part of the semigroup.
- max_Jpower - [in] maximum amount of power integrals used.
void initialize(double time, int finest_scale, bool imaginary, int max_Jpower)
Creates Re or Im of operator.
Uniform down to finest scale so far... (in progress)

15.11 JpowerIntegrals

This is an introduction to the JpowerIntegrals class. We write a small overarching summary of the class where we define the algorithm/equation/structure reasoning for having this class or where it fits with the rest of the code.

class JpowerIntegrals

A class needed for construction Schrodinger time evolution operator.
A two dimensional array consisting of integrals J_{m} as follows. Our main operator has the following expansion

$$
\left[\sigma_{l}^{\mathfrak{n}}\right]_{p j}(a)=\sum_{k=0}^{\infty} C_{j p}^{2 k} \widetilde{J}_{2 k+j+p}(l, a)
$$

where $a=t \mathfrak{N}^{2}=t 4^{\mathfrak{n}}$ and

$$
\widetilde{J}_{m}=\frac{I_{m} e^{i \frac{\pi}{4}(m-1)}}{2 \pi(m+2)!}=\frac{e^{i \frac{\pi}{4}(m-1)}}{2 \pi(m+2)!} \int_{\mathbb{R}} \exp \left(\rho l \exp \left(i \frac{\pi}{4}\right)-a \rho^{2}\right) \rho^{m} d \rho
$$

satisfying the following relation

$$
\widetilde{J}_{m+1}=\frac{i l}{2 a(m+3)} \widetilde{J}_{m}+\frac{i m}{2 a(m+2)(m+3)} \widetilde{J}_{m-1}=\frac{i}{2 a(m+3)}\left(l \widetilde{J}_{m}+\frac{m}{(m+2)} \widetilde{J}_{m-1}\right), \quad m=0,1,2, \ldots
$$

with $\widetilde{J}_{-1}=0$ and

$$
\widetilde{J}_{0}=\frac{e^{-i \frac{\pi}{4}}}{4 \sqrt{\pi a}} \exp \left(\frac{i l^{2}}{4 a}\right)
$$

Public Functions

JpowerIntegrals (double a, int scaling, int M, double threshold $=1.0 \mathrm{e}-15$)
creates an array of power integrals

The array is orginised as a vector ordered as $l=0,1,2, \ldots, 2^{n}-1,1-2^{n}, 2-2^{n}, \ldots,-2,-1$.

Parameters

- a-: parameter a
- scaling - : scaling level
- M - : maximum amount of integrals for each 1
- threshold - : lower limit for neglecting the integrals
std::vector<std::complex<double>> \&operator [] (int index)
in progress

Parameters

index - - in progress

Returns

in progress

Private Functions

void crop (std::vector<std::complex<double>> \&J, double threshold)
Removes negligible elements in \mathbf{J} until it reaches a considerable value.

15.12 Special functions

Some useful functions.
std::complex<double> mrcpp: : free_particle_analytical_solution(double x, double $x 0$, double t, double sigma)
Free-particle time evolution on real line.

Analytical solution of a one dimensional free-particle movement

$$
\psi(x, t)=\sqrt{\frac{\sigma}{4 i t+\sigma}} e^{-\frac{\left(x-x_{0}\right)^{2}}{4 i t+\sigma}}
$$

where $t, \sigma>0$.

Parameters

- \mathbf{x} - [in] space coordinate in \mathbb{R}.
- $\mathbf{x 0}$ - [in] x_{0} center of gaussian function at zero time moment.
- \mathbf{t} - [in] time moment.
- sigma - [in] σ width of the initial gaussian wave.

Returns

The complex-valued wave function $\psi(x, t)$ at the specified space coordinate and time.
double mrcpp: :smooth_compact_function(double x, double a, double b)
A smooth compactly supported non-negative function.

Smooth function on the real line \mathbb{R} defined by the formula

$$
g_{a, b}(x)=\exp \left(-\frac{b-a}{(x-a)(b-x)}\right), \quad a<x<b
$$

and $g_{a, b}(x)=0$ elsewhere.

Parameters

- \mathbf{x} - [in] space coordinate in \mathbb{R}.
- a - [in] the left support boundary.
- $\mathbf{b}-$ [in] the right support boundary.

Returns

The non-negative value $g_{a, b}(x)$ at the specified space coordinate $x \in \mathbb{R}$.

15.13 SchrodingerEvolution_CrossCorrelation

This is an introduction to the SchrodingerEvolution_CrossCorrelation class. We write a small overarching summary of the class where we define the algorithm/equation/structure reasoning for having this class or where it fits with the rest of the code.

class SchrodingerEvolution_CrossCorrelation

Public Functions

SchrodingerEvolution_CrossCorrelation(int amount, int k, int t)
SchrodingerEvolution_CrossCorrelation constructor.

It checks if the order and type are meaningful and then reads matrices from a file. By default the file has some information about the data stored, so the first interger to read is describing the size of the documentation text.

Parameters

- amount - [in] the integer specifying the maximum amount of matrices C^{k} to be used in calculations
- \mathbf{k} - [in] the integer specifying the polynomial order
- t - [in] the integer specifying the scaling basis type

15.14 TimeEvolution_CrossCorrelationCalculator

This is an introduction to the TimeEvolution_CrossCorrelationCalculator class. We write a small overarching summary of the class where we define the algorithm/equation/structure reasoning for having this class or where it fits with the rest of the code.
class TimeEvolution_CrossCorrelationCalculator : public mrcpp::TreeCalculator<2>
An efficient way to calculate ... (work in progress)
An efficient way to calculate ... having the form $\ldots=\ldots$

Public Functions
void calcNode (MWNode<2> \&node) override
This will ... (work in progress)

Parameters

node - [in] ...
void applyCcc (MWNode<2> \&node)
This will ... (work in progress)

Parameters

node - [in] ...

Public Members
bool imaginary
If False then the calculator is using th real part of integrals, otherwise - the imaginary part.

15.15 Apply for complex valued functions

Application of a complex convolution.

```
Warning: doxygenfunction: Unable to resolve function "mrcpp::apply" with arguments None in doxygen xml
output for project "MRCPP" from directory: _build/xml. Potential matches:
- template<int D> void apply(FunctionTree<D> &out, DerivativeOperator<D> &oper,,
๑FunctionTree<D> &inp, int dir)
- template<int D> void apply(double prec, ComplexObject<FunctionTree<D>> &out,」
๑ComplexObject<ConvolutionOperator<D>> &oper, ComplexObject<FunctionTree<D>> &inp,ь
<int maxIter, bool absPrec)
template<int D> void apply(double prec, FunctionTree<D> &out, ConvolutionOperator<D>
\leftrightarrows &oper, FunctionTree<D> &inp, FunctionTreeVector<D> &precTrees, int maxIter, bool`
```

```
absPrec)
- template<int D> void apply(double prec, FunctionTree<D> &out, ConvolutionOperator<D>
&oper, FunctionTree<D> &inp, int maxIter, bool absPrec)
```

(
double prec, ComplexObject< FunctionTree<D>> \&out, ComplexObject< ConvolutionOperator<D>> \&oper, ComplexObject< FunctionTree<D>>\&inp, int maxIter, bool absPrec
)

15.16 HeatOperator

This is an introduction to the HeatOperator class. We write a small overarching summary of the class where we define the algorithm/equation/structure reasoning for having this class or where it fits with the rest of the code.
template<int D>
class HeatOperator : public mrcpp::ConvolutionOperator<D>
Convolution with a heat kernel.
The exponential heat operator $\exp \left(t \partial_{x}^{2}\right)$ can be regarded as a convolution operator in $\$ \mathrm{~L}^{\wedge} 2(\backslash m a t h b b \mathrm{R}) \$$ of the

- $\backslash \operatorname{frac}\left\{(x-y)^{\wedge} 2\right\}\{4 t\} \backslash$ right $) f(y) d y, \backslash q u a d t>0$
]

Public Functions

HeatOperator (const MultiResolutionAnalysis $<D>\& m r a$, double t, double prec)

Constructor of the HeatOperator object.

This will project a kernel of a single gaussian with exponent $1 /(4 t)$.

Parameters

- mra - [in] Which MRA the operator is defined
- t - [in] Time moment
- prec - [in] Build precision

Returns

New HeatOperator object
HeatOperator (const MultiResolutionAnalysis $\langle D>\& m r a$, double t , double prec, int root, int reach $=1$)
Constructor of the HeatOperator object in case of Periodic Boundary Conditions (PBC)

This will project a kernel of a single gaussian with exponent $1 /(4 t)$. This version of the constructor is used for calculations within periodic boundary conditions (PBC). The root parameter is the coarsest negative scale at wich the operator is applied. The reach parameter is the bandwidth of the operator at the root scale. For details see MWOperator

Parameters

- mra - [in] Which MRA the operator is defined
- t-[in] Time moment
- prec - [in] Build precision
- root - [in] root scale of operator.
- reach - [in] width at root scale (applies to periodic boundary conditions)

Returns

New IdentityConvolution object

15.17 HeatKernel

This is an introduction to the HeatKernel class. We write a small overarching summary of the class where we define the algorithm/equation/structure reasoning for having this class or where it fits with the rest of the code.
template<int D>
class HeatKernel : public mrcpp::GaussExp<1>
Heat kernel in \mathbb{R}^{D}.
In \$\mathbb $\mathrm{R}^{\wedge} \mathrm{D} \$$ the heat kernel has the form

$$
K_{t}(x)=\frac{1}{(4 \pi t)^{D / 2}} \exp \left(-\frac{|x|^{2}}{4 t}\right), \quad x \in \mathbb{R}^{D} \text { and } t>0
$$

Public Functions

double calcCoulombEnergy () const

Note: Each Gaussian must be normalized to unit charge $c=(\alpha / \pi)^{D / 2}$ for this to be correct!

Returns

Coulomb repulsion energy between all pairs in GaussExp, including self-interaction
virtual double evalf(const Coord $<D>\& r$) const override

Parameters

\mathbf{r} - [in] Cartesian coordinate

Returns

Function value in a point
void append (const Gaussian<D>\&g)
Append Gaussian to expansion.
void append (const GaussExp<D>\&g)
Append GaussExp to expansion.

Protected Attributes

double *A
Lower bound, NULL if unbounded.
double *B
Upper bound, Null if unbounded.

CLANG-TIDY

To ensure modern coding conventions are followed developers are encouraged to run clang-tidy on the code. Ensure clang-tidy is installed. Then to display available checkers run:

```
$ clang-tidy --list-checks -checks='*' | grep "modernize"
```

This will generate a list looking like this:

```
$ modernize-avoid-bind
$ modernize-deprecated-headers
$ modernize-loop-convert
$ modernize-make-shared
$ modernize-make-unique
$ modernize-pass-by-value
$ modernize-raw-string-literal
$ modernize-redundant-void-arg
$ modernize-replace-auto-ptr
$ modernize-replace-random-shuffle
$ modernize-return-braced-init-list
$ modernize-shrink-to-fit
$ modernize-unary-static-assert
$ modernize-use-auto
$ modernize-use-bool-literals
$ modernize-use-default-member-init
$ modernize-use-emplace
$ modernize-use-equals-default
$ modernize-use-equals-delete
$ modernize-use-noexcept
$ modernize-use-nullptr
$ modernize-use-override
$ modernize-use-transparent-functors
$ modernize-use-using
```

To run any of these modernization's on the code, go to your build directory. From there run the command:

```
$ run-clang-tidy -header-filter='.*' -checks='-*,modernize-your-modernization' -fix
```


INDEX

I

INVALID_ARG_ABORT (C macro), 66

M

mrcpp: : ABGVOperator (C++ class), 47
mrcpp::ABGVOperator::ABGVOperator ($C++$ function), 47
mrcpp: : add (C++ function), 26
mrcpp: : apply (C++ function), 45, 46, 48
mrcpp: :BoundingBox ($C++$ class $)$, 20, 103
mrcpp: :BoundingBox: :BoundingBox ($C++$ function $)$, 20, 21, 103, 104
mrcpp::BoundingBox: :boxLengths ($C++$ member $)$, 108
mrcpp::BoundingBox::cornerIndex ($C++$ member $)$, 107
mrcpp: :BoundingBox::getBoxIndex ($C++$ function), 22, 23, 105, 106
mrcpp::BoundingBox::getNodeIndex ($C++$ function), 22, 23, 105, 106
mrcpp::BoundingBox: :lowerBounds ($C++$ member $)$, 108
mrcpp: :BoundingBox: :nBoxes ($C++$ member $), 107$
mrcpp::BoundingBox::operator= ($C++$ function) , 22, 105
mrcpp::BoundingBox::periodic ($C++$ member $), 107$
mrcpp::BoundingBox: :print (C++function), 107
mrcpp::BoundingBox::setDerivedParameters (C++ function), 106
mrcpp: BoundingBox::setNBoxes ($C++$ function), 106
mrcpp: : BoundingBox: :setPeriodic (C++ function), 107
mrcpp::BoundingBox::setScalingFactors ($C++$ function), 107
mrcpp: :BoundingBox::unitLengths ($C++$ member $)$, 108
mrcpp: :BoundingBox::upperBounds ($C++$ member $)$, 108
mrcpp: :BSOperator ($C++$ class), 48
mrcpp: :BSOperator: :BSOperator ($C++$ function), 48
mrcpp: :build_grid ($C++$ function), 30-32
mrcpp: : clear (C++ function), 37
mrcpp::clear_grid ($C++$ function), 32
mrcpp: :copy_func ($C++$ function), 25
mrcpp: :copy_grid (C++function), 32
mrcpp: :CrossCorrelationCache (C++ class), 111
mrcpp: CrossCorrelationCache::getRMatrix ($C++$ function), 111
mrcpp::CrossCorrelationCache::libPath ($C++$ member), 112
mrcpp: :CrossCorrelationCache::mem ($C++$ member), 112
mrcpp: :CrossCorrelationCache::memLoaded ($C++$ member $), 112$
mrcpp: CrossCorrelationCache::objs ($C++$ member), 112
mrcpp::DerivativeConvolution (C++ class), 44
mrcpp::DerivativeConvolution::DerivativeConvolution (C++ function), 44
mrcpp: : divergence ($C++$ function), 48
mrcpp: : dot (C++function), 29, 36
mrcpp: free_particle_analytical_solution (C++function), 115
mrcpp: : FunctionTree ($C++$ class), 24
mrcpp: :FunctionTree: :add (C++ function), 33
mrcpp: :FunctionTree: :clear ($C++$ function), 33
mrcpp: :FunctionTree: :crop ($C++$ function), 34
mrcpp::FunctionTree::evalf ($C++$ function), 36
mrcpp::FunctionTree::FunctionTree ($C++$ function), 24
mrcpp: FunctionTree::integrate ($C++$ function), 36
mrcpp: :FunctionTree: :loadTree ($C++$ function), 35 mrcpp: :FunctionTree: :map ($C++$ function), 34
mrcpp: :FunctionTree::multiply ($C++$ function), 33
mrcpp::FunctionTree::normalize ($C++$ function), 33
mrcpp: : FunctionTree: : power ($C++$ function $), 34$ mrcpp::FunctionTree::rescale (C++function), 33 mrcpp: :FunctionTree::saveTree ($C++$ function), 35 mrcpp: :FunctionTree::square ($C++$ function), 33
mrcpp::GaussExp ($C++$ class), 56
mrcpp: :GaussExp: : append (C++ function), 56, 57
mrcpp::GaussExp::calcCoulombEnergy ($C++$ func tion), 56
mrcpp::GaussExp::evalf (C++function), 56
mrcpp: : GaussFunc ($C++$ class), 53
mrcpp::GaussFunc::calcCoulombEnergy ($C++$ function), 53
mrcpp::GaussFunc: :differentiate (C++ function), 54
mrcpp: :GaussFunc: :evalf (C++ function), 54
mrcpp::GaussFunc::GaussFunc (C++function), 53
mrcpp::GaussFunc::mult (C++function), 54
mrcpp::GaussFunc::normalize (C++ function), 54
mrcpp::GaussFunc::periodify (C++function), 54
mrcpp: :GaussPoly (C++ class), 55
mrcpp::GaussPoly::differentiate ($C++$ function) , 55
mrcpp: :GaussPoly::evalf ($C++$ function), 55
mrcpp::GaussPoly::GaussPoly (C++ function), 55
mrcpp::GaussPoly::mult (C++function), 55
mrcpp: :GaussPoly: :normalize ($C++$ function), 56
mrcpp::GaussPoly::periodify ($C++$ function), 56
mrcpp::GaussPoly::setPoly (C++ function), 55
mrcpp::get_coef ($C++$ function), 37
mrcpp::get_func ($C++$ function), 37
mrcpp::get_n_nodes ($C++$ function), 37
mrcpp: :get_size_nodes ($C++$ function), 37
mrcpp: :gradient ($C++$ function), 49
mrcpp: :HeatKernel ($C++$ class $), 119$
mrcpp::HeatKernel::A ($C++$ member $), 120$
mrcpp: :HeatKernel: :append ($C++$ function), 119
mrcpp::HeatKernel::B ($C++$ member $), 120$
mrcpp: :HeatKernel::calcCoulombEnergy ($C++$ function), 119
mrcpp: :HeatKernel::evalf (C++function), 119
mrcpp: :HeatOperator (C++ class), 118
mrcpp::HeatOperator: HeatOperator ($C++$ function), 118
mrcpp: :HelmholtzOperator (C++ class), 45
mrcpp::HelmholtzOperator: :HelmholtzOperator (C++ function), 45
mrcpp::IdentityConvolution ($C++$ class), 43
mrcpp::IdentityConvolution::IdentityConvolutic (C++ function), 43, 44
mrcpp::InterpolatingBasis (C++ class), 23, 113
mrcpp::InterpolatingBasis::calcCVMaps (C++ function), 113
mrcpp::InterpolatingBasis::calcQuadratureValu ($C++$ function), 113
mrcpp::InterpolatingBasis::initScalingBasis (C++ function), 113
mrcpp::InterpolatingBasis::InterpolatingBasis (C++ function), 24, 113
mrcpp: : JpowerIntegrals ($C++$ class), 114
mrcpp: : JpowerIntegrals: :crop ($C++$ function), 115
mrcpp::JpowerIntegrals::JpowerIntegrals (C++ function), 115
mrcpp:: JpowerIntegrals: :operator [] (C++ function), 115
mrcpp::LegendreBasis ($C++$ class), 23, 112
mrcpp::LegendreBasis::calcCVMaps ($C++$ function), 113
mrcpp::LegendreBasis::calcQuadratureValues ($C++$ function), 112
mrcpp::LegendreBasis::initScalingBasis ($C++$ function), 112
mrcpp::LegendreBasis::LegendreBasis (C++ function), 23, 112
mrcpp: :map ($C++$ function), 30
mrcpp::multiply (C++function), 27
mrcpp::MultiResolutionAnalysis ($C++$ class $)$, 17, 108
mrcpp::MultiResolutionAnalysis::calcMaxDistance (C++ function), 19, 110
mrcpp::MultiResolutionAnalysis::MultiResolutionAnalysis (C++ function), 18, 19, 108, 109
mrcpp::MultiResolutionAnalysis::operator!= (C++ function), 19, 110
mrcpp::MultiResolutionAnalysis::operator== ($C++$ function), 19, 110
mrcpp::MultiResolutionAnalysis::print (C++ function), 20, 110
mrcpp: :MultiResolutionAnalysis: :setupFilter ($C++$ function), 111
mrcpp: : MWNode ($C++$ class), 80
mrcpp: :MWNode: :~MWNode (C++ function), 80
mrcpp: :MWNode::addCoefBlock (C++function), 82
mrcpp::MWNode::allocCoefs (C++function), 84
mrcpp: :MWNode::attachCoefs (C++function), 82
mrcpp::MWNode::calcComponentNorm ($C++$ function), 85
mrcpp: :MWNode: :calcNorms (C++function), 82
mrcpp::MWNode: :children ($C++$ member $), 88$
mrcpp: :MWNode::childSerialIx (C++ member), 89
mrcpp: :MWNode::clearNorms (C++function), 82
mrcpp: :MWNode::coefs ($C++$ member $), 89$
amrcpp : : MWNode: : componentNorms ($C++$ member), 88
mrcpp: :MWNode::copyCoefsFromChildren (C++ function), 85
mrcpp: :MWNode: :crop (C++ function), 84
mrcpp: :MWNode::cvTransform (C++function), 83
esrcpp: :MWNode: : dealloc ($C++$ function), 84
mrcpp: :MWNode: $:$ deleteChildren($C++$ function), 82
mrcpp::MWNode::deleteGenerated ($C++$ function), 88
mrcpp: :MWNode: :deleteParent (C++ function), 83
mrcpp: :MWNode::freeCoefs (C++function), 85
mrcpp: :MWNode: :getCenter ($C++$ function), 80
mrcpp: :MWNode: :getChildIndex (C++function), 86
mrcpp: :MWNode::getCoefs (C++ function), 81
mrcpp: :MWNode::getExpandedChildPts ($C++$ function), 81
mrcpp::MWNode::getExpandedQuadPts ($C++$ function), 81
mrcpp: :MWNode: :getLowerBounds ($C++$ function), 80
mrcpp: :MWNode: :getNodeNorm (C++ function), 83
mrcpp::MWNode::getPrimitiveChildPts (C++ function), 81
mrcpp::MWNode::getPrimitiveQuadPts ($C++$ function), 81
mrcpp: :MWNode::getScalingNorm(C++function), 81
mrcpp::MWNode::getUpperBounds ($C++$ function), 80
mrcpp: :MWNode::getWaveletNorm ($C++$ function), 81
mrcpp: :MWNode::giveChildCoefs ($C++$ function), 85
mrcpp::MWNode::giveChildrenCoefs ($C++$ function), 85
mrcpp: :MWNode::giveParentCoefs (C++ function), 85
mrcpp: : MWNode: :hasCoord (C++ function), 80
mrcpp: :MWNode::hilbertPath ($C++$ member $), 89$
mrcpp: :MWNode::isAncestor (C++ function), 80
mrcpp: :MWNode::isCompatible (C++function), 80
mrcpp::MWNode::maxSquareNorm (C++ member), 89
mrcpp: :MWNode: :maxWSquareNorm ($C++$ member $), 89$
mrcpp::MWNode::MWNode (C++ function), 80, 84
mrcpp: :MWNode: :mwTransform (C++ function), 83
mrcpp: :MWNode: :nodeIndex ($C++$ member $), 89$
mrcpp: :MWNode::parent ($C++$ member $), 88$
mrcpp: :MWNode: :parentSeriallx ($C++$ member $), 89$
mrcpp: :MWNode::print (C++function), 88
mrcpp: :MWNode::printCoefs ($C++$ function), 81
mrcpp::MWNode::reCompress (C++function), 85
mrcpp::MWNode::resetMaxSquareNorm ($C++$ function), 85
mrcpp: :MWNode::retrieveNode (C++function), 86
mrcpp::MWNode::retrieveNodeNoGen ($C++$ function), 87
mrcpp: :MWNode::retrieveNodeOrEndNode ($C++$ function), 87, 88
mrcpp: :MWNode: :retrieveParent ($C++$ function), 86
mrcpp: :MWNode:: serialIx ($C++$ member $), 89$
mrcpp: :MWNode: : setCoefBlock ($C++$ function), 82
mrcpp: :MWNode::setMaxSquareNorm (C++function), 85
mrcpp: :MWNode::squareNorm ($C++$ member $), 88$
mrcpp::MWNode::threadSafeGenChildren (C++ function), 88
mrcpp: :MWNode::tree (C++ member), 88
mrcpp: :MWNode:: zeroCoefBlock ($C++$ function), 82
mrcpp: :MWNode::zeroCoefs (C++ function), 82
mrcpp::MWNode::zeroNorms (C++function), 82
mrcpp : :MWOperator ($C++$ class $), 43$
mrcpp: : MWTree ($C++$ class), 75
mrcpp::MWTree::~MWTree (C++ function), 76
mrcpp: :MWTree::calcSquareNorm(C++function), 76
mrcpp: :MWTree: :clear ($C++$ function), 76
mrcpp: :MWTree: :copyEndNodeTable (C++ function), 78
mrcpp::MWTree::decrementNodeCount ($C++$ function), 79
mrcpp: :MWTree::deleteRootNodes (C++ function), 78
mrcpp: :MWTree: :endNodeTable ($C++$ member $), 78$
mrcpp::MWTree: :findNode ($C++$ function), 77
mrcpp: :MWTree::getIx (C++function), 78
mrcpp: :MWTree::getNNodes ($C++$ function), 36, 76
mrcpp::MWTree::getNNodesAtDepth ($C++$ function $)$, 76
mrcpp: :MWTree: : getNode ($C++$ function), 77
mrcpp: :MWTree::getNodeOrEndNode ($C++$ function), 77, 78
mrcpp: :MWTree::getRootBox ($C++$ function), 76
mrcpp::MWTree::getSizeNodes (C++ function), 36, 76
mrcpp: :MWTree::getSquareNorm (C++ function), 36, 76
mrcpp::MWTree::incrementNodeCount ($C++$ function), 79
mrcpp: :MWTree::makeMaxSquareNorms ($C++$ function), 78
mrcpp: :MWTree: :mwTransform (C++ function), 76
mrcpp::MWTree::mwTransformDown ($C++$ function), 79
mrcpp: :MWTree: :mwTransformUp (C++ function), 79
mrcpp: :MWTree: :MWTree ($C++$ function), 75
mrcpp: :MWTree::nodesAtDepth ($C++$ member $), 79$
mrcpp::MWTree::nodesAtNegativeDepth (C++ member), 79
mrcpp: :MWTree::print (C++function), 79
mrcpp::MWTree::resetEndNodeTable ($C++$ function), 78
mrcpp: :MWTree: :rootBox ($C++$ member $), 79$
mrcpp: :MWTree:: setZero (C++function), 25, 76
mrcpp: :OperatorNode ($C++$ class), 89
mrcpp::OperatorNode::addCoefBlock ($C++$ function), 92
mrcpp::OperatorNode::allocCoefs (C++ function), 94
mrcpp::OperatorNode::attachCoefs (C++ function), 92
mrcpp::OperatorNode::calcComponentNorm (C++ function), 90
mrcpp::OperatorNode::calcNorms (C++ function), 92
mrcpp: :OperatorNode: : children ($C++$ member $), 97$
mrcpp::OperatorNode: :childSerialIx ($C++$ member), 98
mrcpp::OperatorNode::clearNorms (C++function), 92
mrcpp::OperatorNode: :coefs (C++ member), 98
mrcpp::OperatorNode::componentNorms ($C++$ member), 97
mrcpp: :OperatorNode::copyCoefsFromChildren (C++ function), 94
mrcpp::OperatorNode:: crop (C++ function), 93
mrcpp::OperatorNode::cvTransform (C++ function), 92
mrcpp::OperatorNode: : dealloc (C++ function), 93
mrcpp::OperatorNode::deleteChildren (C++ function), 90
mrcpp::OperatorNode::deleteGenerated (C++ function), 97
mrcpp::OperatorNode::deleteParent ($C++$ function), 92
mrcpp: :OperatorNode::freeCoefs (C++ function), 94
mrcpp::OperatorNode::getCenter (C++ function), 90
mrcpp::OperatorNode::getChildIndex ($C++$ func tion), 95
mrcpp::OperatorNode::getCoefs(C++function), 91
mrcpp::OperatorNode::getComponent ($C++$ function), 90
mrcpp::OperatorNode::getExpandedChildPts (C++ function), 91
mrcpp::OperatorNode::getExpandedQuadPts (C++ function), 91
mrcpp::OperatorNode::getLowerBounds (C++ function), 90
mrcpp::OperatorNode::getNodeNorm (C++ function), 93
mrcpp::OperatorNode::getPrimitiveChildPts (C++ function), 91
mrcpp::OperatorNode::getPrimitiveQuadPts (C++ function), 91
mrcpp::OperatorNode::getScalingNorm (C++ function), 90
mrcpp::OperatorNode::getUpperBounds ($C++$ function), 90
mrcpp::OperatorNode::getWaveletNorm ($C++$ function), 90
mrcpp::OperatorNode::giveChildCoefs (C++ function), 94
mrcpp::OperatorNode::giveChildrenCoefs (C++ function), 94
mrcpp::OperatorNode::giveParentCoefs (C++ function), 94
mrcpp::OperatorNode: :hasCoord ($C++$ function), 90
mrcpp::OperatorNode::hilbertPath ($C++$ member), 98
mrcpp::OperatorNode::isAncestor (C++ function),

90
mrcpp::OperatorNode::isCompatible (C++ function), 90
mrcpp::OperatorNode: :maxSquareNorm ($C++$ member), 98
mrcpp::OperatorNode::maxWSquareNorm ($C++$ member), 98
mrcpp::OperatorNode::mwTransform ($C++$ function), 93
mrcpp::OperatorNode::nodeIndex ($C++$ member $)$, 98
mrcpp::OperatorNode::parent (C++ member), 97
mrcpp::OperatorNode::parentSerialIx (C++ member), 98
mrcpp::OperatorNode::print (C++function), 97
mrcpp::OperatorNode::printCoefs ($C++$ function), 91
mrcpp::OperatorNode: :reCompress ($C++$ function), 94
mrcpp::OperatorNode::resetMaxSquareNorm (C++ function), 94
mrcpp::OperatorNode::retrieveNode ($C++$ function), 95
mrcpp::OperatorNode::retrieveNodeNoGen (C++ function), 96
mrcpp::OperatorNode::retrieveNodeOrEndNode (C++ function), 96, 97
mrcpp::OperatorNode::retrieveParent (C++ function), 95
mrcpp: :OperatorNode: : seriallx ($C++$ member $), 98$ mrcpp::OperatorNode::setCoefBlock ($C++$ function), 91
mrcpp::OperatorNode::setMaxSquareNorm ($C++$ function), 94
mrcpp::OperatorNode::squareNorm ($C++$ member $)$, 97
mrcpp::OperatorNode::threadSafeGenChildren (C++ function), 97
mrcpp::OperatorNode: :tree ($C++$ member), 97
mrcpp::OperatorNode::zeroCoefBlock ($C++$ function), 92
mrcpp::OperatorNode::zeroCoefs ($C++$ function), 91
mrcpp::OperatorNode::zeroNorms ($C++$ function), 92
mrcpp: : OperatorTree ($C++$ class), 98
mrcpp::OperatorTree::calcSquareNorm (C++ function), 99
mrcpp::OperatorTree::clear (C++function), 99
mrcpp::OperatorTree::copyEndNodeTable (C++ function), 101
mrcpp::OperatorTree: : decrementNodeCount (C++ function), 102
mrcpp::OperatorTree::deleteRootNodes ($C++$
function), 101
mrcpp::OperatorTree::endNodeTable ($C++$ member), 102
mrcpp::OperatorTree::findNode (C++ function), 100
mrcpp: :OperatorTree:: getIx ($C++$ function $), 101$
mrcpp::OperatorTree::getNNodes ($C++$ function), 99
mrcpp::OperatorTree::getNNodesAtDepth (C++ function), 99
mrcpp::OperatorTree::getNode (C++function), 99, 100
mrcpp::OperatorTree::getNodeOrEndNode (C++ function), 100, 101
mrcpp::OperatorTree::getRootBox (C++ function), 100
mrcpp::OperatorTree::getSizeNodes (C++ function), 99
mrcpp::OperatorTree::getSquareNorm ($C++$ function), 99
mrcpp::OperatorTree::incrementNodeCount (C++ function), 102
mrcpp::OperatorTree::makeMaxSquareNorms (C++ function), 101
mrcpp::OperatorTree::mwTransform ($C++$ function), 100
mrcpp::OperatorTree::mwTransformDown (C++ function), 99
mrcpp::OperatorTree::mwTransformUp (C++ function), 99
mrcpp: :OperatorTree: :nodePtrAccess ($C++$ member), 102
mrcpp::OperatorTree::nodePtrStore ($C++$ member), 102
mrcpp::OperatorTree::nodesAtDepth ($C++$ member), 102
mrcpp::OperatorTree::nodesAtNegativeDepth ($C++$ member), 102
mrcpp::OperatorTree::print ($C++$ function), 102
mrcpp::OperatorTree::resetEndNodeTable (C++ function), 101
mrcpp::OperatorTree:: rootBox ($C++$ member $), 102$
mrcpp::OperatorTree:: setupOperNodeCache
(C++ function), 99
mrcpp: :OperatorTree: : setZero ($C++$ function), 99
mrcpp: :PHOperator ($C++$ class), 47
mrcpp::PHOperator: :PHOperator ($C++$ function), 48 mrcpp: :Plotter ($C++$ class $), 69$
mrcpp: :Plotter::cubePlot (C++function), 70
mrcpp: :Plotter::gridPlot (C++function), 70
mrcpp: :Plotter::linePlot ($C++$ function), 70
mrcpp::Plotter::Plotter (C++function), 69
mrcpp: :Plotter::setOrigin ($C++$ function), 70
mrcpp: :Plotter: : setRange ($C++$ function), 70
mrcpp::Plotter::setSuffix (C++ function), 69 mrcpp: :Plotter::surfPlot (C++function), 70
mrcpp::PoissonOperator (C++ class), 44
mrcpp: :Poisson0perator: PoissonOperator (C++ function), 45
mrcpp: : power ($C++$ function), 29
mrcpp: :print::environment ($C++$ function), 65
mrcpp::print:: footer ($C++$ function), 65
mrcpp::print::header ($C++$ function $), 65$
mrcpp::print::memory (C++function), 66
mrcpp::print::separator ($C++$ function), 65
mrcpp::print::time ($C++$ function $), 66$
mrcpp::print:: tree (C++function), 65
mrcpp: :Printer ($C++$ class), 63
mrcpp::Printer::getPrecision (C++function), 64
mrcpp: :Printer::getPrintLevel ($C++$ function), 64
mrcpp: :Printer::getWidth ($C++$ function), 64
mrcpp::Printer: :init ($C++$ function), 63
mrcpp: :Printer: : setFixed ($C++$ function), 64
mrcpp: Printer:: setPrecision (C++ function), 64
mrcpp: Printer::setPrintLevel ($C++$ function), 64
mrcpp::Printer::setScientific ($C++$ function), 64
mrcpp: Printer:: setWidth (C++ function), 64
mrcpp::project (C++ function), 25
mrcpp::refine_grid (C++function), 34, 35
mrcpp::SchrodingerEvolution_CrossCorrelation ($C++$ class), 116
mrcpp::SchrodingerEvolution_CrossCorrelation: SchrodingerI ($C++$ function), 116
mrcpp: : SharedMemory ($C++$ class $), 61$
mrcpp::SharedMemory::SharedMemory ($C++$ function), 61
mrcpp::smooth_compact_function (C++ function), 116
mrcpp: :square (C++function), 28
mrcpp: :TimeEvolution_CrossCorrelationCalculator
($C++$ class $), 117$
mrcpp::TimeEvolution_CrossCorrelationCalculator::applyCcc ($C++$ function), 117
mrcpp::TimeEvolution_CrossCorrelationCalculator::calcNode ($C++$ function), 117
mrcpp::TimeEvolution_CrossCorrelationCalculator::imaginary ($C++$ member $), 117$
mrcpp::TimeEvolutionOperator ($C++$ class), 114
mrcpp: :TimeEvolutionOperator::initialize ($C++$ function), 114
mrcpp::TimeEvolutionOperator::TimeEvolutionOperator ($C++$ function), 114
mrcpp: :Timer ($C++$ class), 73
mrcpp: :Timer: :elapsed ($C++$ function), 73
mrcpp::Timer: :operator= $(C++$ function $), 73$
mrcpp: :Timer: :resume ($C++$ function), 73
mrcpp: :Timer: : start ($C++$ function), 73
mrcpp: :Timer: :stop ($C++$ function), 73
mrcpp: :Timer: :Timer ($C++$ function), 73
MSG_ABORT (C macro), 66
MSG_ERROR (C macro), 66
MSG_INFO (C macro), 66
MSG_WARN (C macro), 66

N

NEEDS_FIX (C macro), 67
NEEDS_TESTING (C macro), 67
NOT_IMPLEMENTED_ABORT (C macro), 67
NOT_REACHED_ABORT (C macro), 67

P

println (C macro), 66
printout (C macro), 66

